Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

New Types of Metrics Deformations and Applications to p-Biharmonic Maps


Affiliations
1 Department of Mathematics, University Mustapha Stambouli Mascara, Algeria
     

   Subscribe/Renew Journal


We construct p-biharmonic non p-harmonic maps between Riemannian manifolds (M, g) and (N, h) by first making the ansatz that φ : (M, g) → (N, h) be a p-biharmonic map and then deforming the metric on N by h˜ = h − df ⊗ df to render φ p-biharmonic, where f is a smooth function on N satisfying some conditions. We construct a new example of p-biharmonic non p-harmonic map.

Keywords

p-Harmonic Maps, p-Biharmonic Maps.
Subscription Login to verify subscription
User
Notifications
Font Size


  • P. Baird, A. Fardoun and S. Ouakkas, Conformal and semi-conformal biharmonic maps, Ann. Glob. Anal. Geom., 34 (4)(2008), 403 - 414.
  • P. Baird and D. Kamissoko, On constructing biharmonic maps and metrics, Ann. Global Anal. Geom., 23 (1)(2003), 65 - 75.
  • P. Baird and J. C. Wood, Harmonic morphisms between Riemannain manifolds, Clarendon Press, Oxford, 2003.
  • P. Baird and S. Gudmundsson, p-Harmonic maps and minimal submanifolds, Math. Ann., 294 (1992), 611 - 624.
  • A. Benkartab and A. Mohammed Cherif, New methods of construction for biharmonic maps, Kyungpook Math. J., 59 (2019), 135 - 147.
  • A. Benkartab and A. Mohammed Cherif, Deformations of Metrics and Biharmonic Maps, Communications in Mathematics, 28 (2020), 263 - 275.
  • B. Bojarski and T. Iwaniec, p-Harmonic equation and quasiregular mappings, Banach Center Publ., 19 (1)(1987), 25 - 38.
  • J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109 - 160.
  • A. Fardoun, On equivariant p-harmonic maps, Ann.Inst. Henri. Poincare, 15 (1998), 25 - 72.
  • G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A., 7 (4)(1986), 389 - 402.
  • A. Mohammed Cherif, On the p-harmonic and p-biharmonic maps, J. Geom., 109 (41)(2018).
  • C. Oniciuc, New examples of biharmonic maps in spheres, Colloq. Math., 97 (2003), 131 - 139.
  • S. Ouakkas, Biharmonic maps, conformal deformations and the Hopf maps, Differential Geometry and its Applications, 26 (2008), 495 - 502.
  • B. O’Neil, Semi- Riemannian Geometry, Academic Press, New York, 1983.
  • C. Udri¸ste, Convex Functions and Optimization Methods on Riemannian Manifolds, Mathematics and Its Applications, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994.
  • Y. Xin, Geometry of harmonic maps, Fudan University, 1996.

Abstract Views: 267

PDF Views: 0




  • New Types of Metrics Deformations and Applications to p-Biharmonic Maps

Abstract Views: 267  |  PDF Views: 0

Authors

Bouchra Merdji
Department of Mathematics, University Mustapha Stambouli Mascara, Algeria
Ahmed Mohammed Cherif
Department of Mathematics, University Mustapha Stambouli Mascara, Algeria

Abstract


We construct p-biharmonic non p-harmonic maps between Riemannian manifolds (M, g) and (N, h) by first making the ansatz that φ : (M, g) → (N, h) be a p-biharmonic map and then deforming the metric on N by h˜ = h − df ⊗ df to render φ p-biharmonic, where f is a smooth function on N satisfying some conditions. We construct a new example of p-biharmonic non p-harmonic map.

Keywords


p-Harmonic Maps, p-Biharmonic Maps.

References





DOI: https://doi.org/10.18311/jims%2F2023%2F29702