Open Access
Subscription Access
Open Access
Subscription Access
Division Algebras of Higher Degree over Rational Function Fields in One Variable
Subscribe/Renew Journal
Let k be a field and ℓ a prime not equal to the characteristic of k. Assume that k contains a primitive ℓth ischolar_main of unity. Given a central simple algebra D over k(T) with ramification index at most 3, we show that there exist a centrals simple algebra D0 over k and f, g ∈ k(T)* such that D is Brauer equivalent to the tensor product of D0 and the cyclic algebra (f, g)ℓ over k(T). We also give necessary and sufficient conditions for the algebra D0⊗ (f, g)ℓ to be division for some class of polynomials f and g.
Keywords
Central Simple Algebras, Ramification Index, Rational Function Field.
Subscription
Login to verify subscription
User
Font Size
Information
- A. A. Albert, Structure of algebras, Amer. Math. Soc., Providence, R.I., 1961.
- P. K. Draxl, Skew fields, Cambridge Univ. Press, Cambridge, 1983.
- D.K. Faddeev, Simple algebras over a field of algebraic functions of one variable, Trudy Mat. Inst. Steklov., 38, 321-344, AKd. Nauk SSSR, Moscow. Amer. Math. Soc. Transl. (2) 3 (1956), 15-38.
- P. Gille, T. Szamuely, Lectures on the Merkurjev-Suslins theorem, Cambridge Studies in Advanced Mathematics 101 (2006), Cambridge University Press.
- L. H. Rowen, A. S. Sivatski, and J. P. Tignol, Division algebras over function fields, Algebra and Number Theory, Hindustan Book Agency, New Delhi, 2005.
- J. P. Tignol, Algebras indecomposables d’exposant premier, Advances in Math., 65 (1987), no. 3, 205-228.
Abstract Views: 232
PDF Views: 0