Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Convergence Theorems for Two Asymptotically Nonexpansive Non-self Mappings in Uniformly Convex Banach Spaces


Affiliations
1 Department of Mathematics and I. T., Govt. N. P. G. College of Science, Raipur (C. G.), India
     

   Subscribe/Renew Journal


Let K be a nonempty closed convex non expansive retract of a uniformly convex Banach space E with P as a non expansive retraction. Let T1, T2: K → E be two asymptotically non expansive non-self mappings with sequences {kn }, {hn } ⊂[1,(∞) such that Σn=1(kn hn -1) < ∞ and F = F(T1) ∩ F(T2) = {x E K : T1x = T2x = x}≠ Φ . Let {xn}n=1 be the sequence generated iteratively by xl ∈ K and xn+1 = P(anxn + bnT1 (PT1 )n-1yn + cnln ) ∀n ≥1 yn = P(ān xn + bn Tn (PT2 )n-1xn + cnmn ),∀n ≥1 where {ln }, {mn} are bounded sequences, an+bn +cn = 1 = ān +bn +cn,0 ≤ an +bn +cn, ān +bn +cn ≤ 1, ∀n ∈ N, Σn=1 cn < ∞ and Σn=1 bncn <∞ . If T1 is completely continuous or T1 and T2 satisfy condition (A'), then {xn} converges strongly to a point in F = F(T1) ∩ F(T2). Also if E satisfies Opial's condition or the dual E* of E has the Kedec-Klee property, then {xn} converges weakly to a point in F.

Keywords

Asymptotically Non Expansive Nonself Mappings, Common Fixed Point, the Modified Ishikawa Iterative Sequence with Errors for Non-Self Maps, Uniformly Convex Banach Space, Strong Convergence, Weak Convergence.
Subscription Login to verify subscription
User
Notifications
Font Size


  • S. C. Bose, Weak convergence to a fixed point of an asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 68(1978), 305-308.
  • S. S. Chang, Y. J. Cho and H. Zhou, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean Math. Soc. 38(6) (2001), 1245-1260.
  • C. E. Chidume, On the approximation of fixed points of nonexpansive mappings, Houston J. Math. 7(1981), 345-355.
  • C. E. Chidume, Nonexpansive mappings, generalizations and iterative algorithms. In: Agarwal R.P., O'Reagan D.eds. Nonlinear Analysis and Application. To V. Lakshmikantam on his 80th Birthday (Research Monograph), Dordrecht: Kluwer Academic Publishers, pp. 383-430.
  • C. E. Chidume, E. U. Ofoedu and H. Zegeye, Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. of Mathematical Analysis and Applications, 280(2003), 364-374.
  • C. E. Chidume, N. Shahzad and H. Zegeye, Convergence theorems for mappings which are asymptotically nonexpansive in the intermediate sense, Numer. Funct. Anal. Optimiz. 25(3 and 4) (2004), 239-257.
  • C. E. Chidume, N. Shahzad and H. Zegeye, Strong convergence theorems for nonexpansive mappings in arbitrary Banach spaces, Nonlinear Anal. Submitted.
  • M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl. 207(1997), 345-35l.
  • M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of generalized nonexpansive mappings, Internat. J. Math. Math. Sci. 20(1997), 517-520.
  • K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35(1972), 171-174.
  • S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44(1974), 147-150.
  • S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59(1976), 65-7l.
  • W. Kaczor, Weak convergence of almost orbits of asymptotically nonexpansive commutative semigroups, J. Mathematical Analysis and Applications 272(2002), no.2, 565-574.
  • S. H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn. 53(2001), 143-148.
  • W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4(1953), 506510.
  • Z. Opial, Weak convergence of the sequence of successive approximatins for nonexpansive mappings, Bull. Amer. Math. Soc. 73(1967), 591-597.
  • M. O. Osilike and S. C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Modelling 32(2000), 1181-119l.
  • G. B. Passty, Construction of fixed points for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 84(1982), 212-216.
  • S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67(1979), 274-276.
  • B.E. Rhoades, Fixed point iteration for certain nonlinear mappings, J. Math. Anal. Appl. 183(1994), 118-120.
  • J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158(1991), 407-413.
  • J. Schu, Weak and strong convergence theorems to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43(1991), 153-159.
  • H. F. Senter and W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44(1974), 375-380.
  • K. K. Tan and H. K. Xu, A nonlinear ergodic theorem for asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 45(1992), 25-36.
  • K. K. Tan and H. K. Xu, The nonlinear ergodic theorem for asymptotically nonexpansive mapping in Banach spaces, Proc. Amer. Math. Soc. 114(1992), 399-404.
  • K.K. Tan and H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178(1993), 301-308.
  • K. K. Tan and H. K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122(1994), 733-739.
  • H. K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Analysis, 16(1991), 1139-1146.

Abstract Views: 308

PDF Views: 0




  • Convergence Theorems for Two Asymptotically Nonexpansive Non-self Mappings in Uniformly Convex Banach Spaces

Abstract Views: 308  |  PDF Views: 0

Authors

G. S. Saluja
Department of Mathematics and I. T., Govt. N. P. G. College of Science, Raipur (C. G.), India

Abstract


Let K be a nonempty closed convex non expansive retract of a uniformly convex Banach space E with P as a non expansive retraction. Let T1, T2: K → E be two asymptotically non expansive non-self mappings with sequences {kn }, {hn } ⊂[1,(∞) such that Σn=1(kn hn -1) < ∞ and F = F(T1) ∩ F(T2) = {x E K : T1x = T2x = x}≠ Φ . Let {xn}n=1 be the sequence generated iteratively by xl ∈ K and xn+1 = P(anxn + bnT1 (PT1 )n-1yn + cnln ) ∀n ≥1 yn = P(ān xn + bn Tn (PT2 )n-1xn + cnmn ),∀n ≥1 where {ln }, {mn} are bounded sequences, an+bn +cn = 1 = ān +bn +cn,0 ≤ an +bn +cn, ān +bn +cn ≤ 1, ∀n ∈ N, Σn=1 cn < ∞ and Σn=1 bncn <∞ . If T1 is completely continuous or T1 and T2 satisfy condition (A'), then {xn} converges strongly to a point in F = F(T1) ∩ F(T2). Also if E satisfies Opial's condition or the dual E* of E has the Kedec-Klee property, then {xn} converges weakly to a point in F.

Keywords


Asymptotically Non Expansive Nonself Mappings, Common Fixed Point, the Modified Ishikawa Iterative Sequence with Errors for Non-Self Maps, Uniformly Convex Banach Space, Strong Convergence, Weak Convergence.

References