Open Access
Subscription Access
Open Access
Subscription Access
Refined Estimates on Conjectures of Woods and Minkowski
Subscribe/Renew Journal
Let Λ be a lattice in Rn reduced in the sense of Korkine and Zolotareff having a basis of the form (A1, 0, 0, . . . , 0), (a2,1,A2, 0, . . . , 0), . . . , (an,1, an,2, . . . , an,n−1,An) where A1,A2, . . . ,An are all positive. A well known conjecture of Woods in Geometry of Numbers asserts that if A1A2· · ·An = 1 and Ai ≤ A1 for each i then any closed sphere in Rn of radius √n/2 contains a point of Λ. Woods' Conjecture is known to be true for n ≤ 9. In this paper we give estimates on the Conjecture of Woods for 10 ≤ n ≤ 33, improving the earlier best known results of Hans-Gill et al. These lead to an improvement, for these values of n, to the estimates on the long standing classical conjecture of Minkowski on the product of n non-homogeneous linear forms.
Keywords
Lattice, Covering, Non-Homogeneous, Product of Linear Forms, Critical Determinant, Korkine and Zolotareff Reduction, Hermite’s Constant, Center Density.
Subscription
Login to verify subscription
User
Font Size
Information
- R. P. Bambah, V. C. Dumir and R. J. Hans-Gill, Non-homogeneous problems: Conjectures of Minkowski and Watson, Number Theory, Trends in Mathematics, Birkhauser Verlag, Basel, (2000) 15-41.
- B. J. Birch and H. P. F. Swinnerton-Dyer, On the inhomogeneous minimum of the product of n linear forms, Mathematika 3 (1956), 25-39.
- H. F. Blichfeldt, The minimum values of positive quadratic forms in six, seven and eight variables, Math. Z. 39 (1934), 1-15.
- N. Cebotarev, Beweis des Minkowski’schen Satzes ¨uber lineare inhomogene Formen, Vierteljschr. Naturforsch. Ges. Zurich, 85 Beiblatt, (1940), 27-30.
- H. Cohn and N. Elkies, New upper bounds on sphere packings, I. Ann. of Math., 157(2) (2003), 689-714.
- H. Cohn and A. Kumar, The densest lattice in twenty-four dimensions, Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 58-67.
- J. H. Conway and N. J. A. Sloane, Sphere packings, Lattices and groups, Springer-Verlag, Second edition, New York, 1993.
- P. Gruber, Convex and discrete geometry, Springer Grundlehren Series (vol.336) 2007.
- P. Gruber and C. G. Lekkerkerker, Geometry of Numbers, Second Edition, North Holland, 37 (1987).
- R. J. Hans-Gill, Madhu Raka, Ranjeet Sehmi and Sucheta, A unified simple proof of Woods’ conjecture for n ≤ 6, J. Number Theory,129 (2009) 1000-1010.
- R. J. Hans-Gill, Madhu Raka and Ranjeet Sehmi, On conjectures of Minkowski and Woods for n = 7, J. Number Theory, 129 (2009), 1011-1033.
- R. J. Hans-Gill, Madhu Raka and Ranjeet Sehmi, Estimates On Conjectures of Minkowski and Woods, Indian Jl. Pure Appl. Math.,41(4) (2010), 595-606.
- R.J. Hans-Gill, Madhu Raka and Ranjeet Sehmi, On Conjectures of Minkowski and Woods for n = 8, Acta Arithmetica, 147(4) (2011), 337-385.
- R. J. Hans-Gill, Madhu Raka and Ranjeet Sehmi, Estimates On Conjectures of Minkowski and Woods II, Indian Jl. Pure Appl. Math.,42(5) (2011), 307-333.
- I.V. Il’in, A remark on an estimate in the inhomogeneous Minkowski conjecture for small dimensions, (Russian) 90, Petrozavodsk. Gos. Univ., Petrozavodsk, (1986), 24-30.
- I.V. Il'in, Chebotarev estimates in the inhomogeneous Minkowski conjecture for small dimensions, Algebraic systems, Ivanov. Gos. Univ., Ivanovo, (1991), 115-125.
- Leetika Kathuria and Madhu Raka, On Conjectures of Minkowski and Woods for n = 9 , arXiv:1410.5743v1 [math.NT], 21 Oct, 2014, To appear in Proc. Math. Indian Academy of sciences.
- Leetika Kathuria and Madhu Raka, Refined Estimates on Conjectures of Woods and Minkowski, arXiv:1501.03277v1 [math.NT], 14 Jan 2015.
- Leetika Kathuria and Madhu Raka, Generalization of a result of Birch and SwinnertonDyer, Submitted for publication
- A. Korkine, G. Zolotareff, Sur les formes quadratiques, Math. Ann. 6 (1873), 366-389; Sur les formes quadratiques positives, Math. Ann. 11 (1877), 242-292.
- C. T. McMullen, Minkowski's conjecture, well rounded lattices and topological dimension, J. Amer. Math. Soc. 18 (2005), 711-734.
- L. J. Mordell, Tschebotareff's Theorem on the product of Non-homogeneous Linear Forms (II), J. London Math Soc. 35 (1960), 91-97.
- R.A. Pendavingh and S.H.M. Van Zwam, New Korkine-Zolotarev inequalities, SIAM J. Optim. 18 (2007), no. 1, 364-378.
- A. C. Woods, The densest double lattice packing of four spheres, Mathematika 12 (1965) 138-142.
- A. C. Woods, Lattice coverings of five space by spheres, Mathematika 12 (1965) 143-150.
- A. C. Woods, Covering six space with spheres, J. Number Theory 4 (1972) 157-180.
Abstract Views: 284
PDF Views: 0