Open Access
Subscription Access
Open Access
Subscription Access
Existence of Iterative Fractional Differential Equation with Nonlocal Condition
Subscribe/Renew Journal
The aim of the present paper is to establish the existence and uniqueness of solutions of iterative fractional differential equation with nonlocal condition.
Keywords
Iterative Fractional Differential Equations, Existence of Solution, Fixed Point Theorem.
Subscription
Login to verify subscription
User
Font Size
Information
- V. Berinde; Iterative Approximation of Fixed Points, 2nd Ed., Springer Verlag, Berlin Heidelberg New York, 2007.
- V. Berinde; Existence and approximation of solutions of some first order iterative differential equations, Miskolc Math. Notes, 11(2010), 13-26.
- L. Byszewski; Theorems about existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problems, J. Math. Anal. Appl., 162 (1991), 494-505.
- L. Byszewski and V. Lakshmikantham; Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40 (1991), 11-19.
- C. Chidume; Geometric properties of Banach spaces and nonlinear Iterations, Springer Verlag, Berlin, Heidelberg New York, 2009.
- K. Deng; Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 179 (1993), 630-637.
- M. Edelstein; A remark on a theorem of M. A. Krasnoselskij, Amer. Math. Monthly, 73 (1966), 509-510.
- E. Egri and I. Rus; First order iterative functional-differential equation with parameter, Stud. Univ. Babes-Bolyai Math., 52 (2007), 67-80.
- R. Hilfer; Fractional diffusion based on Riemann-Liouville fractional derivatives, J.Phys. Chem. Bio., 104 (2000), 3914-3917.
- R. W. Ibrahim and S. Momani; On the existence and uniqueness of solutions of a class of fractional differential equations, J. Math. Anal. Appl., 334 (2007), 1-10.
- R. W. Ibrahim; Existence of iterative Cauchy fractional differential equations, Int. J.Math. Sci., 7(3), (2013).
- M. Lauran; Solutions of first iterative differential equations, Annals Univ. Craiova, Mathematics and Computer Science Series, 40(1), (2013), 45-51.
- R. Lewandowski and B. Chorazyczewski; Identification of the parameters of the KelvinVoigt and the Maxwell fractional models, used to modeling of viscoelastic dampers, Computers and Structures, 88 (2010), 1-17.
- A. Ronto and M. Ronto; Succsesive approximation method for some linear boundary value problems for differential equations with a special type of arguments deviation, Miskolc Math. Notes, 10 (2009), 69-95.
- D. Yang and W. Zhang; Solution of equivariance for iterative differential equations, Appl. Math. Lett., 17 (2004), 759-765.
Abstract Views: 327
PDF Views: 0