Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Similarity Solutions of Non-Autonomous Lienard Type Equations


Affiliations
1 Department of Mathematics, Shivaji University, Kolhapur (M.S.) 416 004, India
     

   Subscribe/Renew Journal


In this paper, we obtain similarity solutions of non-autonomous Lienard type equation. First integrals of Lienard type equations are obtained by non-holonomic transformations and these rst integrals are integrated by Lie group analysis.

Keywords

Lienard Type Equation, Lie Group Symmetry, Non-Linear Oscillators, Non-Holonomic Transformation.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Tomas Caraballo and David Cheban, Almost periodic and asymptotically almost periodic solutions of Lienard equation, Discrete and Continuous Dynamical Systems - Series B (DCDS-B), 16(3), (2011), 703-717.
  • V. K. Chandrasekar, M. Senthilvelan and M. Lakshamanan, On Complete integrability and linearization of certain second order nonlinear ordinary differential equations, Proc. Royal Soc. A., 461, (2005), 2451 - 2477, doi:10.1098/rspa.2005.1465.
  • V. K. Chandrasekar, S. N. Pandey , M. Senthilvelan and M. Lakshamanan, A simple and unified approach to identify integrable nonlinear oscillators and systems, J. Maths. Phys., 47(2), (2006), Sr. No.-023508.
  • Parth Guha, A. Ghose Choudhary and Barun Khanra, First integrals for time dependent higher order Riccati equations by non-holonomic transformation, Commun. Nonlinear Sci. Numer Simulat, 16 (8), (2011), 3062-3070.
  • Tiberiu Harko, Francisco S. N. Lobo and M. K. Mak, A class of exact solutions of the Lienard type ordinary non-linear differential equation, J. Engineering Maths., 89(1), (2014), 193-205.
  • Tiberiu Harko and Shi Dong Liang, Exact solutions of the Lienard and generalized Lienard type ordinary non-linear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator, To appear in J. Engineering Maths., arXiv:1505.02364v3 [math-ph], 28 Jauary 2015.
  • L. Herrmann, Oscillations for Lienard type equations, J. Math. Pures Appl., 90(1), (2008), 60-65.
  • H. Kleinert, Path integrals in quantum mechanics, statistics, polymer physics, and financial markets, World Scientic, 2009.
  • H. Kleinert, Nonholonomic mapping principle for classical and quantum mechanics in spaces with curvature and torsion, General Relativity and Gravitation, 32 (5), (2000), 769-839.
  • M. Lakshmanan and V. K. Chandrasekar, Generating Finite Dimensional Integrable Nonlinear Dynamical Systems, European Physical J. Special Topics, 222 (3-4), (2013), 665-688.
  • P. J. Olver, Application of Lie Groups to Differential Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, Volume-107, 1986.
  • S. N. Pandey, P. S. Bindu, M. Senthilvelan and M. Lakshmanan , A group theoretical identification of integrable cases of the Lienard-type equation x + f(x)x + g(x) = 0.I. Equations having non-maximal number of Lie point symmetries, J. Math. physics, 50(8), (2009), Sr.No.-082702.
  • S. N. Pandey, P. S. Bindu, M. Senthilvelan and M. Lakshmanan , A group theoretical identification of integrable cases of the Lienard-type equation x + f(x)x + g(x) = 0: II.Equations having maximal number of Lie point symmetries, J. Math. physics, 50(8), (2009), Sr.No.- 102701.
  • S. H. Thakar, The general solution of generalized Emden-Fowler equation, Bull. Kerala Maths. Assoc., 9(2), (2012), 285-295.

Abstract Views: 261

PDF Views: 1




  • Similarity Solutions of Non-Autonomous Lienard Type Equations

Abstract Views: 261  |  PDF Views: 1

Authors

Ashwini Kulkarni
Department of Mathematics, Shivaji University, Kolhapur (M.S.) 416 004, India
Sarita Thakar
Department of Mathematics, Shivaji University, Kolhapur (M.S.) 416 004, India

Abstract


In this paper, we obtain similarity solutions of non-autonomous Lienard type equation. First integrals of Lienard type equations are obtained by non-holonomic transformations and these rst integrals are integrated by Lie group analysis.

Keywords


Lienard Type Equation, Lie Group Symmetry, Non-Linear Oscillators, Non-Holonomic Transformation.

References