Open Access
Subscription Access
Open Access
Subscription Access
Discrete Fourier Transform φ(3) and θa,b(x, T) for a,b ∈ 1/3Z
Subscribe/Renew Journal
The identities of theta functions θa,b(x, T) for a,b ∈ 1/3Z derived using properties of eigenvectors corresponding to the discrete Fourier transform φ(3). These identities are natural extensions of classical identities of Jacobi theta functions. In particular a quadratic identity and fourth order identity is obtained corresponding to theta functions on 1/3Z.
Keywords
Discrete Fourier Transform, Theta Functions on 1/3Z, Quadratic Identity for Theta Functions on 1/3Z.
Subscription
Login to verify subscription
User
Font Size
Information
- L. Auslander L and R. Tolimeri, Is computing with the nite Fourier Transform pure or applied mathematics?, Bull. Amer. Math Soc., I(1979), 847-897.
- Bruce Berndt, S. Bhargava and F. Garvan, Ramanujan theories of elliptic functions to alternative bases, Trans. Amer. Math Soc., (1995), 347-411.
- D. Mumford, Tata lectures on theta I, Birkhauser 1983.
- D. Galetti and M. A. Marchiolli, Discrete Coherent states and probability distributions in finite dimensional spaces, Annals Physics, 249 (1996), 454-480
- E. T. Whittaker and G. N. Watson, A course of Modern Analysis Fourth ed. Cambridge University Press, 1927.
- M. L. Mehta, Eigen values and eigenvectors of nite Fourier transform, J. Math. Physics, 28(4) (1987), 781-785.
- M. Ruzzi, Jacobi θ functions and discrete Fourier transform, J. Math. Physics, 47 (2006), 1-10.
- Natig M. Atakishiyev, On q-extensions of Mehta's eigenvectors of nit Fourier transform, Int. J. Modern Physics A 21 (2006), 4993-5006.
- R. A. Malekar and H. Bhate, Discrete Fourier transform and Jacobi theta functions identities, J. Math Physics, 51 (2010), 023511.
- R. A. Malekar and H. Bhate, Discrete Fourier transform and Riemann's identities on theta functions. Appl. Math. Letters, 25 (2012), 1415-1419.
- V. B. Matveev, Intertwining relations between Fourier transform and discrete Fourier transform, the related functional identities and beyond, Inverse Problems, 17 (2001), 633-657.
Abstract Views: 238
PDF Views: 0