Open Access
Subscription Access
Open Access
Subscription Access
Degree of Approximation of Fourier Series of Functions in Besov Space by Deferred Cesaro Mean
Subscribe/Renew Journal
In the present article, we study the degree of approximation of Fourier series of functions by deferred Cesaro mean in Besov space which is a generalization of H(α, p) space.
Keywords
Fourier Series, Besov Space, Deferred Cesaro Mean, Delayed Arithmetic Mean.
Subscription
Login to verify subscription
User
Font Size
Information
- R. P. Agnew, On deferred Cesaro means, Ann. Math., 33, (1932), 413-421.
- G. Alexits, Convergence problems of othogonal series, Pergamn Press, Newyork, 1961.
- P. Chandra, On the generalized Fejer means in the metric of Holder space, Math. Nachar, 109, (1982), 39-45.
- P. Chandra and R. N. Mohapatra, Degree of approximation of functions in the Holder metric, Acta Math. Hungar., 41, (1983), 67-76.
- G. Das, T. Ghosh and B. K. Ray, Degree of approximation of function by their Fourier series in the generalized Holder metric, Proc. Indian Acad. Sci(Math. Sci.), 106, (1996), 139-153.
- A. Devore Ronald and G. Lorentz, Constructive approximation, Springer Verlag, Berlin Neidelberg, New York, 1993.
- H. Mohanty, Some aspects of measure of approximations, Ph.D Dissertation, 2012.
- L. Nayak, G. Das and B. K. Ray, An estimate of the rate of convergence of Fourier series in the generalized Holder metric by Deferred Cesaro mean, J. Math. Anal. Appl. 420, (2014), 563-575.
- S. Prossdorf, zur Konvergenz der Fourir reithen Holder stetiger Funktionen, Math. Nachr., 69, (1975), 7-14.
- P. Wojtaszczyk, A Mathematical introduction to Wavelets, London Math. Soc. stuents texts, 37, Cambridge University Press, New York, 1997.
- A. Zygmund, Smooth functions, Duke Math. J. 12, (1945), 47-56.
- A. Zygmund, Trigonometric Series, Second Edition, Volumes I and II combined, Cambridge University Press, New York, 1993.
Abstract Views: 367
PDF Views: 0