Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Some Results for the Inverse Moment of the N-Fold Convolution of the Zero-Truncated Negative Binomial Distribution


Affiliations
1 Department of Mathematics, Shanghai University, Shanghai 200444, India
     

   Subscribe/Renew Journal


In this paper, we consider the r-th inverse moment of the n-fold convolution of the zero-truncated negative binomial distribution Gr(k; n). We mainly discuss the first and second inverse moments of this distribution. We derive some recursive formulas for Gr(k; n). In particular, we give some asymptotic approximations for the first and second inverse moments of the n-fold convolution of the zero-truncated negative binomial distribution.

Keywords

Negative Binomial Distribution, Inverse Moment, Recursive Formulas, Asymptotic Approximation.
Subscription Login to verify subscription
User
Notifications
Font Size


  • J. C. Ahuja, Distribution of the sum of independent decapitated negative binomial variables, Ann. Math. Statist., 42 (1971), 383–384.
  • W. Brass, Simplied methods of tting the truncated negative binomial distribution, Biometrika, 45 (1958), 59–68.
  • Ch. A. Charalambides, Combinatorial Methods in Discrete Distributions, John Wiley & Sons, 2004.
  • B. Epstein and M. Sobel, Some theorems relevant to life testing, Ann. Math. Statist., 25 (1954), 373–381.
  • T. Fujioka, Asymptotic approximations of the inverse moment of the noncentral chisquared variable, J. Japan Statist. Soc., 31 (2001), 99–109.
  • N. L. Johnson, S. Kotz, and A. W. Kemp, Univariate Discrete Distributions, John Wiley & Sons, 1992.
  • M. C. Jones, Inverse moments of negative-binomial distribution, J. Stat. Comput. Simul., 23 (1986), 241–243.
  • A. Jurlewicz and K. Weron, Relaxation of dynamically correlated clusters, J. NonCrystalline Solids, 305 (2002), 112–121.
  • D. G. Kabe, Inverse moments of discrete distribution, Canad. J. Statist., 4 (1976), 133–141.
  • E. Marciniak and J. Wesolowski, Asymptotic Eulerian expansions for binomial and negative binomial reciprocals, Proc. Amer. Math. Soc., 127 (1999), 3329–3338.
  • A. O. Pittenger, Sharp mean-variance bounds for Jesen-type inequalities, Statist. Probab. Lett., 10 (1990), 91–94.
  • C. M. Ramsay, A note on random survivorship group benets, Astin Bull., 23 (1993), 149–156.
  • G. A. Rempala, Asymptotic factorial powers expansions for binomial and negative binomial reciprocals, Proc. Amer. Math. Soc., 132 (2004), 261–272.
  • M. R. Sampford, The truncated negative binomial distribution, Biometrika, 42 (1955), 58–69.
  • D. A.Wooff, Bounds on reciprocal moments with applications and developments in Stein estimation and post-stratication, J. Roy. Stat. Soc., Ser. B 47 (1985), 362–371.
  • Wuyungaowa and T. M. Wang, Asymptotic expansions for inverse moments of binomial and negative binomial, Statist. Probab. Lett., 78 (2008), 3018–3022.
  • S. Zacks, On some inverse moments of negative-binomial distributions and their applications, J. Stat. Comput. Simul., 10 (1980), 163–165.
  • F. Z. Zhao, Some recursive formulas related to inverse moments of the random variables with binomial-type distributions, Statist. Probab. Lett., 82 (2012), 1290–1296.

Abstract Views: 278

PDF Views: 0




  • Some Results for the Inverse Moment of the N-Fold Convolution of the Zero-Truncated Negative Binomial Distribution

Abstract Views: 278  |  PDF Views: 0

Authors

Feng-Zhen Zhao
Department of Mathematics, Shanghai University, Shanghai 200444, India

Abstract


In this paper, we consider the r-th inverse moment of the n-fold convolution of the zero-truncated negative binomial distribution Gr(k; n). We mainly discuss the first and second inverse moments of this distribution. We derive some recursive formulas for Gr(k; n). In particular, we give some asymptotic approximations for the first and second inverse moments of the n-fold convolution of the zero-truncated negative binomial distribution.

Keywords


Negative Binomial Distribution, Inverse Moment, Recursive Formulas, Asymptotic Approximation.

References