Open Access Open Access  Restricted Access Subscription Access

On The Vacuum Energy of the Universe at the Galaxy Level, the Cosmological Level and the Quantum Level


Affiliations
1 Philips Research Labs, Eindhoven, Netherlands
 

It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as vacuum energy, consisting of gravitational particles subject to Heisenberg’s energy-time uncertainty. These particles can be modelled as elementary polarizable Diractype dipoles (“darks”) in a fluidal space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter effect of galaxies to the extent that a numerical value of Milgrom’s acceleration constant can be assigned by theory. Non-polarized vacuum particles beyond the baryonic kernels compose the dark energy at the cosmological level. The result is an interpretation of gravity at the quantum level in terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which correspond with the values of the Lambda-CDM model.

Keywords

Milgrom’s acceleration constant; Bekenstein-Hawking entropy; gravitational dipole; dark matter
User
Notifications
Font Size

  • Frieman JA, Turner MS, Huterer D. Dark energy and the accelerating universe. Annu Rev Astron Astrophys. 2008 ;46:385-432.
  • Peebles PJ, Ratra B. The cosmological constant and dark energy. Reviews of modern physics. 2003;75(2):559.
  • https://jakobschwichtenberg.com/understanding-symmetry-breaking-goldstones-theorem-intuitively/
  • Blanchet L. Dipolar particles in general relativity. Classical and Quantum Gravity. 2007;24(14):3541.
  • Blanchet L, Le Tiec A. Dipolar dark matter and dark energy. Physical Review D. 2009;80(2):023524.
  • Hajdukovic DS. Is dark matter an illusion created by the gravitational polarization of the quantum vacuum?. Astrophysics and Space Science. 2011;334(2):215-8.
  • Penner AR. Gravitational anti-screening as an alternative to the Λ CDM ΛCDM model. Astrophysics and Space Science. 2016; 361:1-5.
  • Roza E. The vacuum polarization paradox and its solution. Astrophysics and Space Science. 2019;364(4):73.
  • Debye P, Huckel E. De la theorie des electrolytes. I. abaissement du point de congelation et phenomenes associes. Physikalische Zeitschrift. 1923;24(9):185-206.
  • Roza E. On the second dipole moment of Dirac’s particle. Foundations of Physics. 2020;50(8):828-49.
  • Roza E. From Black-Body Radiation to Gravity: Why Neutrinos are Left-Handed and Why the Vacuum is not Empty.2023; 11(5):341
  • Einstein A. Relativity: The Special and General Theory. H. Holt and company, NY.1920.
  • Milgrom M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophysical Journal.1983;270:365-70.
  • Collaboration P. Cosmological parameters. Astronomy and Astrophys. 2015;594: A13.
  • Weinberg S. Gravitation and cosmology. John Wiley & Sons Inc. New York. 1972.
  • d'Inverno RA. Introducing Einstein's relativity. Introducing Einstein's relativity by RA D'Inverno. New York: Oxford University Press. 1992.
  • Einstein A. Sitzungsber. Cosmological Considerations on the General Theory of Relativity. Preuss Akad Wiss Berlin (Math. Phys.). 1915; 831:1915.
  • Einstein A. Prinzipielles zur allgemeinen Relativitätstheorie. Annalen der Physik. 1918;360(4):241-4.
  • Dyson FJ, Derbes D. Advanced quantum mechanics. World Scientific; 2011.
  • Perkins DH. Introduction to high energy physics. CAMBRIDGE university press; 2000.
  • Moore TA. A general relativity workbook. Mill Valley: University Science Books; 2013.
  • Kottler F. Uber die physikalischen grundlagen der Einsteinschen gravitationstheorie. Annalen der Physik. 1918;361(14):401-62.
  • Sun LF, Yan ML, Deng Y, et al. Schwarzschild–De Sitter Metric and Inertial Beltrami Coordinates. Modern Physics Letters A. 2013;28(29):1350114.
  • Schutz B. A first course in general relativity. Cambridge university press; 2022.
  • Carroll SM, Press WH, Turner EL. The cosmological constant. Annual review of astronomy and astrophysics. 1992;30(1):499-542.
  • Sola J. Cosmological constant and vacuum energy: old and new ideas. In Journal of Physics: Conference Series 2013; 453(1): 012015.
  • Hawking SW, Ellis GF. The large scale structure of space-time. Cambridge university press; 2023.
  • Norton JD. The cosmological woes of Newtonian gravitation theory.1999.
  • Harvey A, Schucking E. Einstein’s mistake and the cosmological constant. American Journal of Physics. 2000;68(8):723- 7.
  • Jacobson T. Thermodynamics of spacetime: The Einstein equation of state. Physical Review Letters. 1995;75(7):1260.
  • Verlinde EP. Emergent gravity and the dark universe. SciPost Physics. 2017;2(3):016.
  • Yukawa H. On the interaction of elementary particles. I. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series. 1935; 17:48-57.
  • Proca AL. Sur la theorie ondulatoire des electrons positifs et negatifs. Journal de Physique et le Radium. 1936;7(8):347-53.
  • Rubin VC, Ford Jr WK, Thonnard N. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R= 4kpc/to UGC 2885/R= 122 kpc. Astrophysical Journal.1980; 238:471-87.
  • Minkevich AV. On Gravitational Repulsion Effect at Extreme Conditions in Gauge Theories of Gravity. Acta Physica Polonica B. 2007;38(1).
  • Luongo O, Quevedo H. Self-accelerated universe induced by repulsive effects as an alternative to dark energy and modified gravities. Foundations of Physics. 2018; 48:17-26.
  • Etkin V. Gravitational repulsive forces and evolution of universe. Journal of Applied Physics. 2016;8(6):43-9.
  • Gentile G, Famaey B, de Blok WJ. THINGS about MoND. Astronomy & Astrophysics. 2011;527: A76.
  • Friedmann A. Uber die krümmung des raumes. Z Phys. 1922;10:377-86.
  • Pathria RK. The universe as a black hole. Nature. 1972;240(5379):298-9.
  • Liddle A. An introduction to modern cosmology. John Wiley & Sons; 2015.
  • Wolfram S, Mathematica AW. Redwood City.1991.
  • Lambda-CDM model.2020
  • Gonano CA, Zich RE, Mussetta M. Definition for polarization P and magnetization M fully consistent with Maxwell's equations. Progress in Electromagnetics Research B. 2015; 64:83-101.
  • Tamm IE, Mandelstam L, Tamm I. The uncertainty relation between energy and time in non-relativistic quantum mechanics. Selected papers. 1991:115-23.
  • Dirac PA. The quantum theory of the electron. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 1928;117(778):610-24.
  • Bjorken JD, Drell SD. Relativistic quantum mechanics. Mcgraw-Hill College. 1964.
  • Carroll SM. The cosmological constant. Living reviews in relativity. 2001;4(1):1-56.
  • Verlinde E. On the Origin of Gravity and the Laws of Newton. Journal of High Energy Physics. 2011;2011(4):1-27.
  • Adler RJ, Casey B, Jacob OC. Vacuum catastrophe: An elementary exposition of the cosmological constant problem. American Journal of Physics. 1995;63(7):620-6.
  • Einstein field equations.2023 36
  • Carroll D. Spacetime and Geometry: An Introduction to General Relativity .Addison Wesley. San Francisco. 2004.
  • Helmholtz equation

Abstract Views: 99

PDF Views: 1




  • On The Vacuum Energy of the Universe at the Galaxy Level, the Cosmological Level and the Quantum Level

Abstract Views: 99  |  PDF Views: 1

Authors

Engel Roza
Philips Research Labs, Eindhoven, Netherlands

Abstract


It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as vacuum energy, consisting of gravitational particles subject to Heisenberg’s energy-time uncertainty. These particles can be modelled as elementary polarizable Diractype dipoles (“darks”) in a fluidal space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter effect of galaxies to the extent that a numerical value of Milgrom’s acceleration constant can be assigned by theory. Non-polarized vacuum particles beyond the baryonic kernels compose the dark energy at the cosmological level. The result is an interpretation of gravity at the quantum level in terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which correspond with the values of the Lambda-CDM model.

Keywords


Milgrom’s acceleration constant; Bekenstein-Hawking entropy; gravitational dipole; dark matter

References