Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Fabrication of TiO2-Carbon Paste Modified Electrochemical Sensor for 4-Aminophenol in Pharmaceutical Samples


Affiliations
1 Department of Chemistry, Wollo University, P.O. Box 1145, Dessie, Ethiopia
2 Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
3 SBMN Institute of Pharma Sci and Res, Baba Mastnath University, Asthal Bohar - 124021, Harayana, India
     

   Subscribe/Renew Journal


In this study the electrochemical behavior of 4-aminophenol at titanium dioxide modified carbon paste electrode was investigated using cyclic voltammetry. The working parameters for both, cyclic- and square wave- voltametric studies have been optimized using 5.0 mM 4-aminophenol (4-APOH) in 0.1 M NaH2PO4.2H2O buffer solution. The modified rather than unmodified carbon paste sensor, in neutral medium, has exhibited strong electro-catalytic activity towards the redox characteristics of 4-aminophenol by showing two-fold peak current enhancement and 174 mV peak potential shift towards negative direction. The red-ox peak current ratio (I pa/I pc = 1.6) suggested high accumulation efficiency of 4-APOH at the modified sensor. The redox process is quasi reversible and involves the transference of 2e-s and 2H+s followed by diffusion controlled, non-adsorptive behavior of 4-APOH on the surface of sensor at the interface. Further, the electro-catalytic behavior of the modified sensor has been exploited for quantitative determination of 4-aminophenol in pharmaceutical samples using square wave voltammetry. Under optimal experimental conditions, there was a linear relationship between peak current and concentration in the range 2.5 × 10-5 to 2.0 × 10-4 M with a correlation coefficient of 0.998 and limit of detection 1.38 × 10-8 M. The method was successfully applied for the quantitative determination of 4-aminophenol in pharmaceutical formulations against the commercial drugs viz., PANADOL, and Paracetamol at recovery level of 100 ± 1.7 %.

Keywords

4-Aminophenol, Cyclic Voltammetry, Commericial Drugs, TiO2-Carbon Sensor, Square Wave Voltammetry.
Subscription Login to verify subscription
User
Notifications
Font Size


  • T. Li, G. An, Y. Xiong, X. Zhu, H. Xing and G. Liu, Mater Phys. Mec., 4, 101 (2001).
  • V. Augugliaro, M. Litter, L. Palmisano and J. Photochem. Photobiol. C. Photochem. Rev. 7, 123 (2006).
  • C. Berrios, R. Arce, M. C. Rezende, M. S. Ureta-Zanartu, and C. Gutieerrez, Electrochim. Acta., 53, 2768 (2008).
  • E. Brillas, E. Mur, R. Sauleda, L. Sánchez, J. Peral, X. Domenech, and J. Casado, Appl Catal B: Environ., 16, 31 (1998).
  • P. Canizares, L. Martínez R. Paz, C. Saez, J. Lobato, and M. A. Rodrigo, J. Chem. Technol. Biotechnol., 81, 1331 (2006).
  • P. Canizares, C. Saez, J. Lobato, and M. A. Rodrigo, Electrochim. Acta., 49, 4641 (2004).
  • T. Charoenraks, S. Chuanuwatanakul, K. Honda, Y. Yamaguchi, and O. Chailapakul, Anal. Sci., 21, 241 (2005).
  • D. Li, L. Qin, W. Dai, Y. Y. J. Chem. Ind. Eng. (China), 54, 1017 (2003).
  • K. Polat, Turk. J. Chem., 27, 501 (2003).
  • M.Y. Li, Q. S. Yan, J. Z. Fang, X. H. Tang and Q. H. Tang, J. Chem. Ind. Eng. (China), 54, 1650 (2003).
  • Kirk-Othmer, Encyclopedia of Chemical Technology, 4th edition, Wiley Inter science, Vol. 2. (1995).
  • S. Mitchell and R. Waring, Ullamann’s Encyclopedia of Industrial Chemistry, 5th edition VCH, Weinheim. A2 (1985).
  • IARC, Monograph on the Evaluation of the Carcinogenic Risk of Chemicals to Man. WHO, International Agency for Research on Cancer: Geneva, 71, 758 (1999).
  • R. Yoshida, S. Oikawa, Y. Ogawa, Y. Miyakoshi, M. Ooida, K. Asanuma, and H. Shimizu, Mater. Res., 415, 139 (1998).
  • D. Li, X. Sun, H. Zhang and X. Xie, J. Environ. Anal. Chem., 92, 324 (2012).
  • H. Filik, M. Hayvali, and E. Kilic. Anal. Chim. Acta, 535, 177 (2005).
  • S. D. Cekic, H. Filik, and R. J. Anal. Chem., 60, 1019 (2005).
  • H. Filik and A. Tavman, J. Anal. Chem., 62, 530 (2007).
  • M. A. Karimi, M. R. Nateghi, M. Malekzadeh, F. Banifatemeh, and O. Moradlou, Asian J. Chem., 19, 4533 (2007).
  • N. G. Karousos and S. M. Reddy, Analyst, 127, 368 (2002).
  • E. Wyszecka-Kaszuba, M. Warowna-Grzeskiewicz, and Z. Fijalek, J. Pharm. Biomed. Anal., 32, 1081 (2003).
  • M. S. Ali, M. Ghori, S. Rafiuddin and A. R. Kahtri, J. Pharm. Biomed. Anal., 43, 158 (2007).
  • Q. Chu, L. Jiang, X. Tian and J. Ye., Anal. Chim. Acta., 606, 246 (2008).
  • H. Xu, C. F. Duan, Z. F. Zhang, J. Y. Chen, C. Z. Lai, M. Lain and H. Cui, Water Res., 39, 396 (2005).
  • E. P. Gil, H. T. Tang, H. B. Halsall, W. R. Heineman, and A. S. Clinical Chem, 36, 662 (1990).
  • R. H. Baughman, A. A. Zakhidov, W. A. De Heer, Science, 297, 787 (2002).
  • S. W. Seo and W. S. Jung, Bull. Korean Chem. Soc., 33, 2435 (2012).
  • H. Lu, L. Song, and Y. Hu, Polym. Adv. Technol., 22, 379 (2011).
  • G. Eranna, B. C. Joshi, D. P. Runthala and R. P. Gupta, Crit. Rev. Solid State Mater. Sci., 29, 111 (2004).
  • J. G. Lu, P. Chang and Z. Fan, Mater. Sci. Engg., 52, 49. (2006).
  • N. Barsan, D. Koziej and U. Weimar, Sensors Actuators B: Chem., 121, 18 (2007).
  • Y. Fan, J. H. Liu, C. P. Yang, M. Yu, and P. Liu, Sensors Actuators B: Chem., 157, 669 (2011).
  • K. R. Mahanthesha, B. E. K. Swamy, K. V. Pai, U. Chandra, and B. S. Sherigara, Int. J. Electro-chem. Sci., 5, 1962 (2010).
  • Y. Tadesse, A. Tadese, R. C. Saini, R. Pal, Int. J. Electro-chem., doi.org/10.1155/2013/849327 (2013).
  • Y. Tadesse, R. Pal, A. Tadese, A. Woldu and R. C. Saini, Int. J. Sci. Res. Pubs., 5, 1 (2015).
  • R. S. Nicholson, Anal. Chem., 37, 1351 (1965).
  • B. Habibi, M. Jahanbakhshi, and M. Abazari, J. Iran. Chem. Soc., 3, 324 (2013).
  • S. Mehretie , S. Admassie, T. Hunde, M. Tessema and http://ischolarglobal.com/index.php/JSSTISSST/editor/viewMetadata/107853#T. Solomon, Talanta, 85, 1376 (2011).
  • N. R. Hegde, R. R. Hosamani and S. T. Nadibewoor, Anal. Lett., 42, 1665 (2009).
  • R. S. Chen, W. H. Huang, H. Tong, Z. L. Wang, and J. K. Cheng, Anal. Chem., 75, 6341 (2003).
  • M. Boas, K. M. Main, U. Feldt-Rasmussen, J. D. Meeker, K. K. Ferguson, C. M. Hall and K. B. Paul, Eur. J. Endocrinol., 154, 599 (2009).
  • A. Safavi, N. Maleki, and O. Moradlou, Electroanalysis, 20, 2158 (2008).

Abstract Views: 302

PDF Views: 2




  • Fabrication of TiO2-Carbon Paste Modified Electrochemical Sensor for 4-Aminophenol in Pharmaceutical Samples

Abstract Views: 302  |  PDF Views: 2

Authors

Gidey Bahre
Department of Chemistry, Wollo University, P.O. Box 1145, Dessie, Ethiopia
Tadele Hunde
Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
Mekonen Tirfu
Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
Rishi Pal
SBMN Institute of Pharma Sci and Res, Baba Mastnath University, Asthal Bohar - 124021, Harayana, India
R. C. Saini
Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia

Abstract


In this study the electrochemical behavior of 4-aminophenol at titanium dioxide modified carbon paste electrode was investigated using cyclic voltammetry. The working parameters for both, cyclic- and square wave- voltametric studies have been optimized using 5.0 mM 4-aminophenol (4-APOH) in 0.1 M NaH2PO4.2H2O buffer solution. The modified rather than unmodified carbon paste sensor, in neutral medium, has exhibited strong electro-catalytic activity towards the redox characteristics of 4-aminophenol by showing two-fold peak current enhancement and 174 mV peak potential shift towards negative direction. The red-ox peak current ratio (I pa/I pc = 1.6) suggested high accumulation efficiency of 4-APOH at the modified sensor. The redox process is quasi reversible and involves the transference of 2e-s and 2H+s followed by diffusion controlled, non-adsorptive behavior of 4-APOH on the surface of sensor at the interface. Further, the electro-catalytic behavior of the modified sensor has been exploited for quantitative determination of 4-aminophenol in pharmaceutical samples using square wave voltammetry. Under optimal experimental conditions, there was a linear relationship between peak current and concentration in the range 2.5 × 10-5 to 2.0 × 10-4 M with a correlation coefficient of 0.998 and limit of detection 1.38 × 10-8 M. The method was successfully applied for the quantitative determination of 4-aminophenol in pharmaceutical formulations against the commercial drugs viz., PANADOL, and Paracetamol at recovery level of 100 ± 1.7 %.

Keywords


4-Aminophenol, Cyclic Voltammetry, Commericial Drugs, TiO2-Carbon Sensor, Square Wave Voltammetry.

References





DOI: https://doi.org/10.18311/jsst%2F2016%2F6603