Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Preparation of Giant Unilamellar Vesicles and Solid Supported Bilayer from Large Unilamellar Vesicles: Model Biological Membranes


Affiliations
1 Department of Physics, Jadavpur University, Kolkata- 700032, India
2 Variable Energy Cyclotron Centre, India
     

   Subscribe/Renew Journal


Giant Unilamellar Vesicles (GUV) and supported planar membranes are excellent model biological systems for studying the structure and functions of membranes. We have prepared GUV from Large Unilamellar Vesicles (LUV) using electroformation and Supported planar Lipid Bilayer (SLB) by vesicle fusion method. LUV was prepared using an extrusion method and was characterized using Dynamic Light Scattering (DLS) and zeta potential measurements. The techniques for obtaining GUV as well as SLB from LUV have been demonstrated. We have directly observed the formation of GUV under phase contrast microscopy. This study will provide some insights into the physico-chemical properties of both nano and micron size vesicles. We believe that this method could be extremely useful for reconstituting various bio-molecules in GUV. We have presented one example where an antimicrobial peptide NK-2 was reconstituted in GUV prepared from LUV. SLB formation was monitored and characterized using Atomic Force Microscopy (AFM).

Keywords

AFM, Dynamic Light Scattering, Model Membranes, Optical Microscopy, Solid Supported Bilayer, Vesicles.
Subscription Login to verify subscription
User
Notifications
Font Size


  • B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, ‘Molecular Biology of the Cell’, Garland publishing, Tayor and Francis Group (1994).
  • D. W. Lee, X. Banquy, K. Kristiansen, Y. Kaufman, J. M. Boggs and J. N. Israelachvili, Prog. Natl. Acad. Sc., USA, 111, 768 (2014).
  • R. P. Richter, R. Bérat, and A. R. Brisson, Langmuir, 22, 3497 (2006).
  • G. J. Hardy, R. Nayak, S. Zauscher, Curr.Opin. Coll. Int. Sc., 18, 448 (2013).
  • M. Mingeot-Leclercq, M. Deleu, R. Brasseur and Y. F Dufrêne, Nature Protocols, 3, 1654 (2008).
  • D. E. Discher and A. Eisenberg, Science, 297, 967 (2002).
  • J. R. Howse, R. A. L. Jones, G. Battaglia, R. E. Ducker, G. J. Leget and A. J. Ryan, Nature Materials, 8, 507 (2009).
  • S. F. Fenz, K. Sengupta, Integr. Biol., 4, 982 (2012).
  • R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske and R. Lipowsky and J. Phys: Condens. Matter, 18, S1151 (2006).
  • P. Walde, K. Cosentino, H. Engel and P. Stano, Chem. Bio. Chem., 11, 848 (2010).
  • S. Galdiero, A. Falanga, M. Cantisani, M. Vitiello, G. Morelli and M. Galdiero, Int. J. Mol. Sci., 14, 18758 (2013).
  • K. A. Brogden, Nature, 4, 238 (2005).
  • S. Karmakar and V. A. Raghunathan, Physics Express, 4, 6 (2014).
  • S. Karmakar and V. A. Raghunathan, Phys. Rev. Lett., 91, 098102 (2003).
  • Fischer, A. Franco and T. Oberholzer, Chem. Bio.Chem., 3, 409 (2002).
  • J. B. Song, L. Cheng, A. P. Lin, J. Yin, M. Kuang and H. W. Duan, J. Am. Chem. Soc., 133, 10760 (2011).
  • P. Yang and R. Dimova. Biomimetic Based Application, Edited by A Georg, In Tech, 523 (2011).
  • Y. Li, R. Lipowsky and R. Dimova, J. Am. Chem. Soc., 130, 12252 (2008).
  • M. N. Holme, I. A. Fedotenko, D. Abegg, J. Althaus, L. Babel, F. Favarger, R. Reiter, R. Tanasescu, P.L Zaffalon, A. Ziegler, B. Muller, T. Saxer and A. Zumbluehl, Nature Nanotech, 7, 536 (2012).
  • V. P. Torchilin, Nature Rv. Drug. Discov., 4, 145 (2005).
  • F. M. Menger and K. D. Galrielson, Angew Chem. Ed. Engl., 34, 2091(1995).
  • M. I. Angelova, S. Soleau, Phmeleard, J. F. Faucon and P. Bothorel, Progr. Coll. Pol. Sci., 89, 127 (1992).
  • M. J. Hope, M. B. Bally, W. Webb and P. R. Cullis, Biochim. Biophys. Acta, 812, 55 (1985).
  • R. Hunter, Zeta potential in colloid Science, Academic Press, New York (1981).
  • B. Klaszyk, V. Knecht, R. Lipowsky and R. Dimova, Langmuir, 26, 18951 (2010).
  • T. Pott, H. Baurrais, and P. Meleard. Chem. phys. Lipids, 154, 115 (2008).
  • C. Scomparin, S. Lecuyer, M. Ferreira, T. Charitat and B. Tinland. Eur. Phys. J. E., 28, 211(2009).
  • P. Maity, B. Saha, G. Suresh Kumar, S. Karmakar, Biochim. Biophys. Acta, 1858, 706 (2016) 29. M. I. Angelova, S. Soleau, P. Meleard, J.F Faucon and P. Bothorel, Prog. Colloid Polym. Sci., 89, 127 (1992).
  • T. Bhatia, P. Husen, J. Brewer, L. A. Bagatolli and P. L. Hansen, Biochim. Biophys. Acta., 1848, 3175 (2015).
  • P. Meleard, L. A. Bagatolli, T. Pott, Methods Enzymol., 465, 161 (2009).
  • W. Hanke, W. R. Schulue, ‘Planar Lipid Bilayers: Methods and Applications’, Academic Press (2012).
  • L. K. Tamm and H. M. McConnell, Biophys. J., 47, 105 (1985).
  • E. Kalb, S. Frey and L. K. Tamm, Biochim. Biophys. Acta, 1103, 307 (1992).
  • M. Zasloff, Nature, 415, 389 (2002).

Abstract Views: 296

PDF Views: 2




  • Preparation of Giant Unilamellar Vesicles and Solid Supported Bilayer from Large Unilamellar Vesicles: Model Biological Membranes

Abstract Views: 296  |  PDF Views: 2

Authors

Amrita Basu
Department of Physics, Jadavpur University, Kolkata- 700032, India
Pabitra Maity
Department of Physics, Jadavpur University, Kolkata- 700032, India
Prasanta Karmakar
Variable Energy Cyclotron Centre, India
Sanat Karmakar
Department of Physics, Jadavpur University, Kolkata- 700032, India

Abstract


Giant Unilamellar Vesicles (GUV) and supported planar membranes are excellent model biological systems for studying the structure and functions of membranes. We have prepared GUV from Large Unilamellar Vesicles (LUV) using electroformation and Supported planar Lipid Bilayer (SLB) by vesicle fusion method. LUV was prepared using an extrusion method and was characterized using Dynamic Light Scattering (DLS) and zeta potential measurements. The techniques for obtaining GUV as well as SLB from LUV have been demonstrated. We have directly observed the formation of GUV under phase contrast microscopy. This study will provide some insights into the physico-chemical properties of both nano and micron size vesicles. We believe that this method could be extremely useful for reconstituting various bio-molecules in GUV. We have presented one example where an antimicrobial peptide NK-2 was reconstituted in GUV prepared from LUV. SLB formation was monitored and characterized using Atomic Force Microscopy (AFM).

Keywords


AFM, Dynamic Light Scattering, Model Membranes, Optical Microscopy, Solid Supported Bilayer, Vesicles.

References





DOI: https://doi.org/10.18311/jsst%2F2016%2F7753