Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Physicochemical Investigation on the Pulmonary Surfactant of Some Vertebrates


Affiliations
1 Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata - 700032, West Bengal, India
2 Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
3 Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore– 721102, West Bengal, India
4 Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India, India
     

   Subscribe/Renew Journal


Large aggregate (LA) fraction of the pulmonary surfactant (PS) isolated from five different animals of the vertebrate group, lungfish, chicken, crocodile, stumpie lizard and guinea pig were isolated and characterized. Active pulmonary surfactant components were obtained by chloroform-methanol extraction of the saline suspended LA fraction. Total phospholipid (PL) and protein content were estimated biochemically by standard enzymatic methods. A systematic progression in the PL and protein content was noticed with the developmental sequence of the animals, except the crocodile, which could be due to the difficulty in the PS isolation procedure. In vitro functionality of the solvent spread film was carried out in a Langmuir surface balance by way of surface pressure (π)-area (A) measurements. PS from all the species exhibited reversible compression and expansion cycles. A clear correlation between the maximum attainable surface pressure (πmax), also known as the collapse pressure (πc) and the developmental sequence, with some exceptions, could have been established. Langmuir-Blodgett deposits, transferred onto freshly cleaved mica, were imaged by atomic force microscopy for the five different species. DPPC enriched domains showed different dimensions for the five different species. The comprehensive set of studies shed light on the composition, film functionality and structure of the pulmonary surfactants of the vertebrates where a correlation with the evolution sequence is observed.


Keywords

Cholesterol, Domain, Lipid, Protein, Pulmonary Surfactant, AFM.
Subscription Login to verify subscription
User
Notifications
Font Size


  • A. D. Bangham, Lung, 165, 17 (1987). Crossref.
  • J. A. Clements, J. Nellenbogen and H. J. Trahan, Science, 169, 603(1970). Crossref.
  • I. Frerking, A. Gunther, W. Seeger and U. Pison, Intensive Care Med., 27, 1699(2001). Crossref.
  • J. Goerke, Biochim. Biophys. Acta, Mol. Basis Dis. 1408, 79 (1998). Crossref.
  • Y.Y. Zuo, S.M. Tadayyon, E. Keating, L. Zhao, R.A.W. Veldhuizen, N.O. Petersen, M. W. Amrein and F. Possmayer, Biophys. J., 95, 2779 (2008). Crossref.
  • K. V. Neergaard, Z. Ges. Exp. Med. 66, 373(1929). Crossref.
  • M. Griese, Eur. Respir. J., 13, 1455 (1999). Crossref.
  • H. Nakahara, S. Lee and O. Shibata, Biophys. J., 96, 1415 (2009). Crossref PMid:19217859 PMCid:PMC2717221
  • H. Nakahara, S. Lee, G. Sugihara and O. Shibata, Langmuir 22, 5792 (2006). Crossref.
  • J. Pérez-Gil and K.M.W. Keough, Biochimi. Biophys. Acta Mol. Basis Dis., 1408, 203 (1998). Crossref.
  • S. Schurch, J. Goerke and J.A. Clements, Proc. Natl. Acad. Sci. USA., 73, 4698 (1976). Crossref PMid:1070020 PMCid:PMC431602
  • S. Schurch, R. Qanbar, H. Bachofen and F. Possmayer, Biol Neonate.1, 61 (1995). Crossref.
  • M. Amrein, A. von Nahmen, M. Sieber, Eur. Biophys. J.26, 349 (1997). Crossref PMid:9352639
  • S. Krol, M. Ross, M. Sieber, S. Kunneke, H. J. Galla and A. Janshoff, Biophys. J., 79, 904 (2000). Crossref.
  • D.Y. Takamoto, M.M. Lipp, A. von Nahmen, K.Y. Lee, A. J. Waring and J.A. Zasadzinski, Biophys. J. 81, 153 (2001). Crossref.
  • R.H. Notter, S. A. Tabak and R.D. Mavis, J. Lipid Res., 21, 10 (1980). PMid:6892572
  • J.G. Turcotte, A.M. Sacco, J.M. Steim, S. A. Tabak and R.H. Notter, Biochimi. Biophys. Acta - Lipids and Lipid Metabolism, 488, 235 (1977). Crossref.
  • J.C. Watkins, Biochimi. Biophys. Acta - Lipids and Lipid Metabolism, 152, 293 (1968). Crossref.
  • H.M. McConnell, Annu. Rev. Phys. Chem., 42, 171 (1991). Crossref.
  • H. M. McConnell and R. De Koker, Langmuir, 12, 4897 (1996). Crossref.
  • L.M. van Golde, Biol. Neonate., 1, 2 (1995). Crossref.
  • R. E. Pattle and D.A. Hopkinson, Nature, 200, 894 (1963). Crossref PMid:14096074
  • C. B. Daniels, S. Orgeig and A.W. Smits, Physiol. Zool., 68, 539 (1995). Crossref.
  • C.B. Daniels, S. Orgeig, P.G. Wood, L.C. Sullivan, O. V. Lopatko and A.W. Smits, Am. Zool.,38, 305 (1998). Crossref.
  • A. Günther, C. Ruppert, R. Schmidt, P. Markart, F. Grimminger, D. Walmrath and W. Seeger, Respir. Res.2, 353 (2001). Crossref PMCid:PMC64803
  • J.F. Lewis and R. Veldhuizen, Annu. Rev. Physiol.,65, 613 (2003). Crossref PMid:12517997
  • B. Robertson and H.L. Halliday, Biochim. Biophys. Acta., 19, 2(1998). Crossref.
  • C.B. Daniels, H.A. Barr, J. H. Power and T.E. Nicholas, Exp. Lung. Res., 16, 435 (1990). Crossref PMid:2226354
  • C.B. Daniels, O. V. Lopatko and S. Orgeig, Clin. Exp. Pharmacol. Physiol., 25, 716 (1998). Crossref PMid:9750962
  • C. B. Daniels and S. Orgeig, Comp. Biochem. Physiol. A Mol. Integr. Physiol., 129, 9 (2001). Crossref.
  • C. B. Daniels, S. Orgeig and A.W. Smits, Respir. Physiol., 102, 121 (1995). Crossref.
  • C.B. Daniels, S. Orgeig, A. W. Smits and J.D. Miller, Exp. Lung. Res.,22, 267 (1996). Crossref PMid:8792121
  • C.B. Daniels, S. Orgeig, J. Wilsen and T.E. Nicholas, Respir. Physiol., 95, 249 (1994). Crossref.
  • R.E. Pattle, Nature. 175, 1125 (1955). Crossref PMid:14394123
  • G.M. Hughes, Ultrastructure of the air-breathing organs of some lower vertebrates, Societe Francaise de Microscopie Electronique, Paris, 1970.
  • G.M. Hughes, J. W. Ryan and U. Ryan, J. Physiol.236, 15P (1974). PMid:4406159
  • B.M. Discher, K.M. Maloney, D.W. Grainger, C. A. Sousa and S.B. Hall, Biochemistry, 38, 374(1999). Crossref PMid:9890919 PMCid:PMC3517734
  • B.M. Discher, K.M. Maloney, W.R. Schief, D. W. Grainger, V. Vogel and S.B. Hall, Biophys. J., 71, 2583 (1996). Crossref.
  • S. Mukherjee, K. Maiti, M. Fritzen-Garcia, S. Bhattacharya, K. Nag, A. Panda and S. Moulik, Biophys. Chem., 134, 1 (2008). Crossref PMid:18241975
  • K. Nag, M. Fritzen-Garcia, R. Devraj, A.K. Panda, Langmuir. 23, 4421 (2007). Crossref PMid:17341098
  • K. Nag, J. Perez-Gil, M.L. Ruano, L.A. Worthman, J. Stewart, C. Casals and K.M. Keough, Biophys. J., 74, 2983 (1998). Crossref.
  • A.K. Panda, K. Nag, R.R. Harbottle, K. Rodriguez-Capote, R.A. Veldhuizen, N. O. Petersen and F. Possmayer, Am. J. Respir. Cell. Mol. Biol., 30, 641 (2004). Crossref PMid:14630614
  • M. Nanjundan and F. Possmayer, Biochem. J., 358, 637 (2001). Crossref PMid:11535125 PMCid:PMC1222098
  • E. G. Bligh and W.J. Dyer, Can. J. Biochem. Physiol., 37, 911(1959). Crossref PMid:13671378
  • J. Riley and R.J. Henderson, Parasitology, 119, S89 (1999). PMid:11254150
  • A.J. McCabe, D.T. Wilcox, B. A. Holm and P.L. Glick, J. Pediatr. Surg., 35, 1687 (2000). Crossref PMid:11101717
  • M.R. Fedde, Poult. Sci., 77, 1130 (1998). Crossref PMid:9706077
  • H.R. Duncker, Ergeb. Anat. Entwicklungsgesch., 45, 7 (1971). PMid:4258755
  • H.R. Duncker, General Morphological Principles of Amniotic Lungs, in: J. Piiper, (Ed), Respiratory Function in Birds, Adult and Embryonic, Proceedings in Life Sciences, Springer Berlin Heidelberg, 1978, pp. 2. Crossref.
  • S. Yu, P.G. R. Harding, N. Smith and F. Possmayer, Lipids, 18, 522 (1983). Crossref PMid:6688646
  • L.K. McGregor, C. B. Daniels and T.E. Nicholas, Copeia, 1993, 326 (1993). Crossref.
  • E.R. Schachner, J. R. Hutchinson and C.G. Farmer, Peer. J. 1, e60 (2013). Crossref PMid:23638399 PMCid:PMC3628916
  • J.S. Torday, V.K. Rehan, J.W. Hicks, T. Wang, J. Maina, E.R. Weibel, C.C.W. Hsia, R. J. Sommer and S.F. Perry, Integr. Comp. Biol.,47, 601(2007). Crossref PMid:20607138 PMCid:PMC2895359
  • S. Orgeig, H. A. Barr and T.E. Nicholas, Exp. Lung. Res., 21, 157 (1995). Crossref PMid:7729374
  • S. Orgeig, C. B. Daniels and A.W. Smits, J. Comp. Physiol B., 164, 337 (1994). Crossref PMid:7983248
  • D.B. Gutierrez, A. Fahlman, M. Gardner, D. Kleinhenz, M. Piscitelli, S. Raverty, M. Haulena and P.V. Zimba, Respir. Physiol. Neurobiol. 211, 29(2015). Crossref PMid:25812797 PMCid:PMC4450144
  • N.J. Miller, A.D. Postle, S. Orgeig, G. Koster and C.B. Daniels, Respir. Physiol. Neurobiol., 152, 152(2006). Crossref PMid:16140043
  • P. Wydro, B. Krajewska and K. Hac-Wydro, Biomacromolecules,8, 2611 (2007). Crossref PMid:17630796
  • R. Banerjee and J. R. Bellare, J. Appl. Physiol., 90, 1447(1985).
  • R.G. Spragg, P.J. Ponganis, J.J. Marsh, G. A. Rau and W. Bernhard, J. Appl. Physiol., 96, 1626 (1985). Crossref PMid:14688033
  • W. Bernhard, A. Gebert, G. Vieten, G.A. Rau, J.M. Hohlfeld, A.D. Postle and J. Freihorst, Am. J. Physiol. Regul. Integr. Comp. Physiol., 281, R327 (2001). PMid:11404309
  • R.R. Harbottle, K. Nag, N.S. McIntyre, F. Possmayer, N.O. Petersen, Langmuir, 19, 3698 (2003). Crossref.
  • M. Deleu, K. Nott, R. Brasseur, P. Jacques, P. Thonart, Y.F. Dufrêne, Biochimi. Biophys. Acta - Biomembranes, 1513, 55 (2001). Crossref.
  • E. Sparr, K. Ekelund, J. Engblom, S. Engström and H. Wennerström, Langmuir, 15, 6950 (1999). Crossref.
  • E. Sparr, L. Eriksson, J.A. Bouwstra, K. Ekelund, Langmuir,17, 164 (2001). Crossref.

Abstract Views: 294

PDF Views: 3




  • Physicochemical Investigation on the Pulmonary Surfactant of Some Vertebrates

Abstract Views: 294  |  PDF Views: 3

Authors

Suvasree Mukherjee
Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata - 700032, West Bengal, India
Clive A. Prestidge
Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
Sandra Orgeig
Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
Amiya Kumar Panda
Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore– 721102, West Bengal, India
Satya Priya Moulik
Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India, India

Abstract


Large aggregate (LA) fraction of the pulmonary surfactant (PS) isolated from five different animals of the vertebrate group, lungfish, chicken, crocodile, stumpie lizard and guinea pig were isolated and characterized. Active pulmonary surfactant components were obtained by chloroform-methanol extraction of the saline suspended LA fraction. Total phospholipid (PL) and protein content were estimated biochemically by standard enzymatic methods. A systematic progression in the PL and protein content was noticed with the developmental sequence of the animals, except the crocodile, which could be due to the difficulty in the PS isolation procedure. In vitro functionality of the solvent spread film was carried out in a Langmuir surface balance by way of surface pressure (π)-area (A) measurements. PS from all the species exhibited reversible compression and expansion cycles. A clear correlation between the maximum attainable surface pressure (πmax), also known as the collapse pressure (πc) and the developmental sequence, with some exceptions, could have been established. Langmuir-Blodgett deposits, transferred onto freshly cleaved mica, were imaged by atomic force microscopy for the five different species. DPPC enriched domains showed different dimensions for the five different species. The comprehensive set of studies shed light on the composition, film functionality and structure of the pulmonary surfactants of the vertebrates where a correlation with the evolution sequence is observed.


Keywords


Cholesterol, Domain, Lipid, Protein, Pulmonary Surfactant, AFM.

References





DOI: https://doi.org/10.18311/jsst%2F2017%2F18079