Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Influence of In-Situ Annealing of Si-Rich Silicon Carbide Thin Films


Affiliations
1 School of Electronics Engineering, VIT University, Chennai - 600127, Tamil Nadu, India
2 School of Mechanical and Building Sciences, VIT University, Chennai - 600127, Tamil Nadu, India
     

   Subscribe/Renew Journal


Si-rich Silicon carbide thin films have grown popularity in the past decade for various opto-electronic applications. Post processing of these thin films at temperature higher than 1000oC usually lead to phase transformations to form Si nanoclusters embedded in amorphous SiC deposited by sputtering on thin films. However, the processing technique is crucial to avoid contaminants, and obtain good quality films. Therefore, a novel in-situ annealing approach within the deposition chamber is carried out at temperatures lower than usual. The influence of in-situ annealing on the material property is meticulously studied by means of Spectroscopic Ellipsometry (SE), Diffused Reflectance Spectroscopy (DRS), and Fourier Transform Infrared Spectroscopy (FTIR). In SE, the spectra are fitted using various models; the refractive index values confirm the Si-richness of the film. The band gap (2.5 to 1.5 eV) is extracted from UV spectra using Tauc plot, which confirms the coexistence of the multiphase structure with the possibility of having Si-NC with different dimensions. The results obtained are promising for optoelectronic device applications.

Keywords

In-Situ Annealing, Nanoclusters, Optoelectronics, Silicon Carbide, Spectroscopy.
Subscription Login to verify subscription
User
Notifications
Font Size


  • W. J. Choyke, H. Matsunami and G. Pensl, ‘Silicon Carbide: Recent Major Advances’, 2nd edn. Springer, New York, (2003). PMCid:PMC1180594
  • F. Nava, G. Bertuccio, A. Cavallini and E. Vittones, Meas. Sci. Tech., 19, (2008).
  • P. M. Sarro, Sensor Actuator Phys., 82, 210 (2000). https:// doi.org/10.1016/S0924-4247(99)00335-0
  • J. P. Conde, V. Chu, F. da Silva, A. Kling, Z. Dai, J. C. Soares, S. Arekat, A. Fedorov, M. N. Berberan-Santos F. Giorgis and C. F. Pirri, J. Appl. Phys., 85 (1999).
  • L. Gou, C. Qi, J. Ran and C. Zheng, SiC film deposition by DC magnetron sputtering, Thin Solid Films, 345, 42 (1999). https://doi.org/10.1016/S0040-6090(99)00070-X
  • A. K. Costa, S. S. Camargo Jr, C. A. Achete and R. Carius, Thin Solid Films, 243 (2000). https://doi.org/10.1016/ S0040-6090(00)01321-3
  • M. Mukherjee, Properties and Applications of Silicon Carbide (2011).
  • J. Huran, A. Valovic, P. Bohacek, V. N. Shvetsov, A. P Kobzev, S. B. Borzakov, A. Kleinov, M. Sekacova, J. Arbet and V. Sasinková, Appl. Surf. Sci., 269, 88 (2013). https:// doi.org/10.1016/j.apsusc.2012.10.162
  • Y. Cao, P. Lu, X. Zhang, J. Xu, L. Xu and K. Chen, Nanoscale Research Letters, 9, 634 (2014). https://doi.org/10.1186/1556-276X-9-634
  • J. Moon, S. J. Baik, O. Byungsung, J. C. Lee, Nanoscale, 7, 503 (2012). https://doi.org/10.1186/1556-276X-7-503 PMid:22953733 PMCid:PMC3493276
  • Z. Lin, Y. Guo, C. Song, J. Song, X. Wang, Y. Zhang and R. Huang, J. Alloy. Comp., 633, 153 (2015). https://doi.org/10.1016/j.jallcom.2015.02.027
  • Q. Cheng, E. Tam, S. Xu, and K. K. Ostrikov, Nanoscale, 2, 594 (2010). https://doi.org/10.1039/b9nr00371a PMid:20644764
  • G. Conibeer, The 48th AuSES Annual Conference, 1-3 Dec (2010).
  • F. Sohrabi, A. Nikniazi and H. Movla, Intech (2013).
  • G. Conibee, M. Green, et al. Thin Solid Films, 511, 654 (2006). https://doi.org/10.1016/j.tsf.2005.12.119
  • D. Di and G. Conibeer, M. A. Green, Sol. Energ Mater. Sol. Cell, 94, 2238 (2010). https://doi.org/10.1016/j.solmat.2010.07.018
  • L. Mangolini, J. Vac. Sci. Tech. B, 31 (2013).
  • E. C. Cho, M. A. Green, G. Conibeer, D. Song, Y. H. Cho, G. Scardera, S. Huang, S. Park, X. J. Hao, Y. Huang and L. Van Dao, Adv. Optoelectron (2007).
  • M. A. Green, E.-C. Cho, Y. Cho, et al., ‘All-silicon tandem cells based on “artificial” semiconductor synthesised using silicon quantum dots in a dielectric matrix’, Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, Spain, June, 3 (2005).
  • G. Conibeer, M. A. Green, R. Corkish, et al., Thin Solid Films, 511-512, 654–662 (2006). https://doi.org/10.1016/j.tsf.2005.12.119
  • M. Künle, S. Janz, K. G. Nickel, A. Heidt, M. Luysberg and O. Eibl, Sol. Energ. Mater. Sol. Cell., 115, 11(2013). https:// doi.org/10.1016/j.solmat.2013.03.011
  • J. Lopez-Vidrier, S. Hernández, J. Samà, M. Canino, M. Allegrezza, M. Bellettato, R. Shukla, M. Schnabel, P. Löper, L. López-Conesa, S. Estradé, F. Peiró, S. Janz, and B. Garrido, Mater. Sci. Eng. B, 178, 639 (2012). https://doi.org/10.1016/j.mseb.2012.10.015
  • Y. Rui, S. Li, Y. Cao, J. Xu, W. Li and K. Chen, Appl. Surf. Sci., 269, 37 (2013). https://doi.org/10.1016/j.apsusc.2012.09.118
  • M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt and J. Bläsing, Appl. Phys. Lett., 80, 661 (2002). https://doi.org/10.1063/1.1433906
  • F. Gourbilleau, X. Portier, C. Ternon, P. Voivenel, R. Madelon and R. Rizk, Appl. Phys. Lett., 78 (2001). https:// doi.org/10.1063/1.1371794
  • X. Chen and P. Yang, J. Mater. Sci.: Mater. Electron., 26, 4604 (2015). https://doi.org/10.1007/s10854-015-3147-4
  • C.-H. Liang, O. Debieu, Y.-T. An, L. Khomenkova, J. Cardin, et al, J. Lumin., 132, 3118 (2012). https://doi.org/10.1016/j.jlumin.2012.01.046
  • G. A. Niklasson, C. G. Granqvist and O. Hunderi, Appl. Optic., 20 (1981).
  • K. Nishida, K. Ono and K. Eriguchi, Jpn. J. Appl. Phys., 56 (2017).
  • R. Shukla, C. Summonte, M. Canino, M. Allegrezza, M. Bellettato, A. Desalvo, D. Nobili, S. Mirabella, N. Sharma, M. Jangir and I. P. Jain, Adv. Compos. Lett., 3, 297(2012).
  • S. Baskar and R. Pratibhanalini, Materials Today: Proceedings, 3, 2121 (2015).
  • R. Monga, S. K. Gupta and R. P. Nalini, Int. J. Innovat. Appl. Stud., 8, 107 (2014).
  • A. V. Vasin, Y. Ishikawa, A. V. Rusavsky, A. N. Nazarov, A. A. Konchitz and V. S. Lysenko, Quantum Electronics and Optoelectronics, 18, 63 (2015). https://doi.org/10.15407/spqeo18.01.063
  • L. Tong, M. Mehregany and W. C. Tang, ‘Amorphous Silicon Carbide Films by Plasma-Enhanced Chemical Vapor Deposition, Micro Electro Mechanical Systems’, IEEE MEMS ‘93, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (1993).
  • Y.-H. Joung, H. I. Kang, J. H. Kim, H.-S. Lee, J. Lee and W. S. Choi, Nanoscale Research Letters, 7, 22 (2012). https://doi.org/10.1186/1556-276X-7-22 PMid:22221730 PMCid:PMC3276418
  • F. Gourbilleau, C. Ternon, D. Maestre, O. Palais, and C. Dufour, J. Appl. Phys., 106 (2009). https://doi.org/10.1063/1.3156730
  • C.-T. Lee, L.-H. Tsai, Y.-H. Lin, G.-R. Lin, ECS J. Solid State Sci. Technol., 1, Q144 (2012). https://doi.org/10.1149/2.005301jss
  • Q. Cheng, S. Xu, K. Ostrikov, Acta Mater., vol. 58, no. 2, pp. 560, (2010). https://doi.org/10.1149/2.005301jss
  • D. A. Zimnyakov, A. V. Sevrugin, S. A. Yuvchenko, F. S.Fedorov, E. V. Tretyachenko, M. A. Vikulova, D. S. Kovaleva, E. Y. Krugova and A. V. Gorokhovsky, Data in Brief, 71383 (2016).
  • M. Allegrezza, F. Gaspari, M. Canino, M. Bellettato, Desalvo, C. Summonte, Thin Solid Films, 556, 105 (2014). https://doi.org/10.1016/j.tsf.2014.01.025
  • A. Kole, P. Chaudhuri, Thin Solid Films, 522, 45 (2012). https://doi.org/10.101https://doi.org/10.1016/j.tsf.2012.02.0786/j.tsf.2014.01.025

Abstract Views: 274

PDF Views: 2




  • Influence of In-Situ Annealing of Si-Rich Silicon Carbide Thin Films

Abstract Views: 274  |  PDF Views: 2

Authors

Sam Baskar
School of Electronics Engineering, VIT University, Chennai - 600127, Tamil Nadu, India
Pratibha Nalini
School of Mechanical and Building Sciences, VIT University, Chennai - 600127, Tamil Nadu, India

Abstract


Si-rich Silicon carbide thin films have grown popularity in the past decade for various opto-electronic applications. Post processing of these thin films at temperature higher than 1000oC usually lead to phase transformations to form Si nanoclusters embedded in amorphous SiC deposited by sputtering on thin films. However, the processing technique is crucial to avoid contaminants, and obtain good quality films. Therefore, a novel in-situ annealing approach within the deposition chamber is carried out at temperatures lower than usual. The influence of in-situ annealing on the material property is meticulously studied by means of Spectroscopic Ellipsometry (SE), Diffused Reflectance Spectroscopy (DRS), and Fourier Transform Infrared Spectroscopy (FTIR). In SE, the spectra are fitted using various models; the refractive index values confirm the Si-richness of the film. The band gap (2.5 to 1.5 eV) is extracted from UV spectra using Tauc plot, which confirms the coexistence of the multiphase structure with the possibility of having Si-NC with different dimensions. The results obtained are promising for optoelectronic device applications.

Keywords


In-Situ Annealing, Nanoclusters, Optoelectronics, Silicon Carbide, Spectroscopy.

References





DOI: https://doi.org/10.18311/jsst%2F2018%2F20097