Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Effect of Growing Conditions and Post Treatments on Calcium Phosphate Films Obtained by Electrode Position


Affiliations
1 Departamento de física y matemática, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarril, Manizales, Caldas, Colombia
2 Departamento de física y matematica, Universidad Autonoma de Manizales, Antigua Estacion del Ferrocarril, Manizales, Caldas, Colombia
3 Departamento de electrónica y automatizacion, Universidad Autonoma de Manizales, Antigua Estacion del Ferrocarril, Manizales, Caldas, Colombia
4 Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Libramiento Norponiente #2000, Fraccionamiento Real de Juriquilla, Queretaro 76230, Mexico
5 Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional, Libramiento Norponiente #2000, Fraccionamiento Real de Juriquilla, Queretaro 76230, Mexico
     

   Subscribe/Renew Journal


The effect of growing conditions and post treatments in electrodeposited calcium phosphate films on 316 L stainless steel is presented. The concentration and pH of electrolyte solution and the potential values for the electrodeposition process were determined based on a study of cyclic voltammetry curves. The electrolyte concentration was fixed at 0.025 M ((NH4) H2PO4) and 0.042 M (Ca(NO3)2.4H2O), choosing a pH = 5 as the better condition for the films deposition. In addition, the electrolyte temperature was varied between room temperature and 60°C to determine the influence of this parameter on the deposited films. Films were characterized using Fourier Transform Infrared Spectroscopy, X-ray diffraction and Scanning electron microscopy equipped with energy dispersive spectroscopy. The as deposited films at -1.2 V and -1.7 V exhibit the dicalcium phosphate dihydrate phase (Brushite) while thermal post treatment favor the formation of octacalcium phosphate in amorphous phase, and basic treatment tend to produce the Hydroxyapatite phase. The suggested mechanism for the HAp phase formation, after the basic treatment, consists in providing the necessary OH- groups to complete the synthesis process.

Keywords

Brushite, Calcium Phosphate, Electrodeposition, Hydroxyapatite.
Subscription Login to verify subscription
User
Notifications
Font Size


  • L. Vecbiskena, ‘Nano-Sized Calcium Phosphates: Synthesis Technique and Their Potential in Biomedicine’; de Recent Global Research and Education: Technological Challenges, 25 (2017).
  • M. Ebrahimi, M. G. Botelho and S. V. Dorozhkin, Mater. Sci. Eng., 71, 1293 (2017). https://doi.org/10.1016/j.msec.2016.11.039 PMid:27987685
  • A. Szcześ, L. Hołysz and E. Chibowski, Adv. Colloid Interface Sci., 20, 4 (2017).
  • S. A. Oma, J. Ballare and S. M. Ceré, Electrochim. Acta, 203, 309 (2016). https://doi.org/10.1016/j.electacta.2016.01.051
  • S. Agarwala, J. Curtin, B. Duffy and S. Jaiswal, Mater. Sci. Eng. C, 68, 948 (2016.)
  • A. Aziz, R. Backly, N. Taha, A. Maghraby and S. Kandil, Mater. Sci. Eng. C, 76, 1188 (2017). https://doi.org/10.1016/j.msec.2017.02.053 PMid:28482485
  • L. Leena and S. S. Bhupinder, Journal of Nanomaterials and Molecular Nanotechnology, 4, 1 (2015).
  • N. Tshepo P., T. Mira, H. Margit, H. B. Robert and T. Chris, Surf. Coating. Tech., 294, 153 (2016). https://doi.org/10.1016/j.surfcoat.2016.03.045
  • G. R. Bojan, V. Miroljub, Š. Maja, V. S. Nikola S. and R. A. Nenad, Ceram. Int., 42, 411 (2016).
  • M. A. Cruza, G. Ruiza, A. Faria, D. Zancanela, L. Pereira, L. Ciancaglinia and A. Ramosa, Appl. Surf. Sci., 370, 459 (2016). https://doi.org/10.1016/j.apsusc.2015.12.250
  • R. Asria and W. Harunb, Journal of the Mechanical Behavior of Biomedical Materials, 57, 95 (2016). https://doi.org/10.1016/j.jmbbm.2015.11.031 PMid:26707027
  • D. Sidane, H. Rammal, A. Beljebbar, S. C. Gangloff, D. Chicot, F. Velard, H. Khirredine, A. Montagne and H. Kerdjoudj, Mater. Sci. Eng. C, 72, 650 (2017). https://doi.org/10.1016/j.msec.2016.11.129 PMid:28024634
  • J. Ballarre, D. Lopez, W. Schreiner, A. Duran and S. M. Cere, Appl. Surf. Sci., 253, 7260 (2007). https://doi.org/10.1016/j.apsusc.2007.03.007
  • Y. Zeng, X. Pei, S. Yang, H. Qin, H. Caid, S. Hu, L. Suig, Q. Wan and J. Wangd, Surf. Coating Tec., 286, 72 (2016). https://doi.org/10.1016/j.surfcoat.2015.12.013
  • D. H. He, P. Wang, P. Liu, X. K. Liu, F. C. Ma and J. Zhao, Surf. Coating Tec., 301, 6 (2016) https://doi.org/10.1016/j.surfcoat.2016.07.005
  • A. Vladescua, M. Braic, F. Ak Azem, I. Titorencu, V. Braic, V. Pruna, A. Kiss, A. C. Parau and I. Birlik, Appl. Surf. Sci., 354, 373 (2015). https://doi.org/10.1016/j.apsusc.2015.05.059
  • D.-Y. Lin and X.-X. Wang, Colloids and Surfaces B: Biointerfaces, 82, 637 (2011). https://doi.org/10.1016/j.colsurfb.2010.09.025 PMid:20965703
  • R. A. Surmenev, M. A. Surmeneva and A. A. Ivanova, Acta Biomaterialia, 10, 557 (2014). https://doi.org/10.1016/j.actbio.2013.10.036 PMid:24211734
  • B. Ben-Nissan, C. Chai and L. Evans, ‘Crystallographic and spectroscopic characterization and morphology of biogenic and synthetic apatites’; Encyclopedic Handbook of Biomaterials and Bioengineering: Part B. New York: Marcel Dekker, (1995).
  • C. Ocampo, D. Villegas and L. Veleva, J. Electrochem. Soc., 152, C692 (2005). https://doi.org/10.1149/1.2030355
  • D. Lin and X. Wang, Surf. Coating Tec., 204, 3205 (2010). https://doi.org/10.1016/j.surfcoat.2010.03.020
  • M. C. Wang, H. T. Chen, W. J. Shih, H. F. Chang, M. H. Hon and I. M. Hung, Ceram. Int., 41, 2999 (2015). https://doi.org/10.1016/j.ceramint.2014.10.135
  • W. Wu and G. Nancollas, Pure Appl. Chem., 70, 1867 (1998). https://doi.org/10.1351/pac199870101867
  • E. Meng, S. Guan, H. Wang, L. Wang, S. Z. J. Hu, C. Ren, J. Gao and Y. Feng, Appl. Surf. Sci., 257, 4811 (2011). https:// doi.org/10.1016/j.apsusc.2010.12.073
  • D. Gopi, V. Collins, A. Prakash, L. Kavitha, S. Kannan, P. Bhalaji, E. Shinyjoy and J. Ferreira, Corrosion Sci., 53, 2328 (2011). https://doi.org/10.1016/j.corsci.2011.03.018
  • A. Tsetsekou, D. Brasinika, V. Vaou and E. Chatzitheodoridis, Mater. Sci. Eng. C., 43, 555 (2014). https://doi.org/10.1016/j.msec.2014.07.011 PMid:25175250
  • M. B. Kannan, Surf Coating Tech., 301, 36 (2016). https://doi.org/10.1016/j.surfcoat.2015.12.044
  • W. J. Shih, Y. H. Chen, S. H. Wang, W. L. Li, M. H. Hon and M. C. Wang, J. Cryst. Growth, 285, 633 (2005). https://doi.org/10.1016/j.jcrysgro.2005.08.042
  • M. Falk, Spectrochim. Acta., 40, 43 (1984). https://doi.org/10.1016/0584-8539(84)80027-6
  • B. S. I. Petrov, Spectrochim. Acta., 23A, 2637 (1967). https://doi.org/10.1016/0584-8539(67)80155-7
  • D. Gopi, J. Indira and L. Kavitha, Surf Coating Tech., 206, 2859 (2013). https://doi.org/10.1016/j.surfcoat.2011.12.011
  • P. Kamalanathan, S. Ramesh, L. Bang, A. Niakan, C. Tan, J. Purbolaksono, H. Chandran and W. Teng, Ceram. Int., 40, 1634 (2014). https://doi.org/10.1016/j.ceramint.2014.07.074
  • E. Boanini, M. Gazzano and A. Bigi, Acta Biomater, 6, 1882 (2010). https://doi.org/10.1016/j.actbio.2009.12.041 PMid:20040384
  • R. LeGeros, J. LeGeros, O. Trautz and E. Klein, Dev. Appl. Spectrosc., 7, 3 (1970). https://doi.org/10.1007/978-1-4684-8589-9_1
  • J. Katic, M. Metikos-Hukovi, S. Skapin, M. Petravic and M. Varasanec, Electrochim. Acta, 127, 173 (2014). https://doi.org/10.1016/j.electacta.2014.01.168
  • K. Ohta, M. Kikuchi, J. Tanaka and H. Eda, Chem. Lett., 31 (2002). https://doi.org/10.1246/cl.2002.894
  • M. S. Shojai, M. T. Khorasani and A. Jamshidi, J. Cryst.Growth, 361, 73 (2012). https://doi.org/10.1016/j.jcrysgro.2012.09.010
  • S. Arifuzzaman and S. Rohani, J. Cryst. Growth, 267, 624 (2004). https://doi.org/10.1016/j.jcrysgro.2004.04.024
  • R. Alvarez, L. A. Evans, P. J. Milham and M. A. Wilson, Geoderma, 118, 245 (2004). https://doi.org/10.1016/S0016-7061(03)00207-6
  • S. Dorozhkin, Calcium Orthophosphates, ‘Applications in Nature’; Singapore: Temasek, Boulevard (2012)
  • S. Ramesh, C. Y. Tan, M. Hamdi, I. Sopyan and W. D. Teng, ‘The influence of Ca/P ratio on the properties of hydroxy-apatite bioceramics’; de International Conference on Smart Materials and Nanotechnology in Engineering (2007).

Abstract Views: 345

PDF Views: 1




  • Effect of Growing Conditions and Post Treatments on Calcium Phosphate Films Obtained by Electrode Position

Abstract Views: 345  |  PDF Views: 1

Authors

Francy N. Jimenez-Garcia
Departamento de física y matemática, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarril, Manizales, Caldas, Colombia
Laura R. Giraldo-Torres
Departamento de física y matematica, Universidad Autonoma de Manizales, Antigua Estacion del Ferrocarril, Manizales, Caldas, Colombia
Belarmino Segura-Giraldo
Departamento de electrónica y automatizacion, Universidad Autonoma de Manizales, Antigua Estacion del Ferrocarril, Manizales, Caldas, Colombia
Astrid Lorena Giraldo-Betancur
Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Libramiento Norponiente #2000, Fraccionamiento Real de Juriquilla, Queretaro 76230, Mexico
Juan Munoz-Saldana
Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional, Libramiento Norponiente #2000, Fraccionamiento Real de Juriquilla, Queretaro 76230, Mexico

Abstract


The effect of growing conditions and post treatments in electrodeposited calcium phosphate films on 316 L stainless steel is presented. The concentration and pH of electrolyte solution and the potential values for the electrodeposition process were determined based on a study of cyclic voltammetry curves. The electrolyte concentration was fixed at 0.025 M ((NH4) H2PO4) and 0.042 M (Ca(NO3)2.4H2O), choosing a pH = 5 as the better condition for the films deposition. In addition, the electrolyte temperature was varied between room temperature and 60°C to determine the influence of this parameter on the deposited films. Films were characterized using Fourier Transform Infrared Spectroscopy, X-ray diffraction and Scanning electron microscopy equipped with energy dispersive spectroscopy. The as deposited films at -1.2 V and -1.7 V exhibit the dicalcium phosphate dihydrate phase (Brushite) while thermal post treatment favor the formation of octacalcium phosphate in amorphous phase, and basic treatment tend to produce the Hydroxyapatite phase. The suggested mechanism for the HAp phase formation, after the basic treatment, consists in providing the necessary OH- groups to complete the synthesis process.

Keywords


Brushite, Calcium Phosphate, Electrodeposition, Hydroxyapatite.

References





DOI: https://doi.org/10.18311/jsst%2F2019%2F21052