Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Influence of Some Organic Derivatives on the Corrosion Inhibition of Udimet700 Alloy in 1 M HCl Solution


Affiliations
1 Department of Basic Science, Delta University, 35712, Gamasa, Egypt
2 Production Engineering & Mechanical Design Department, Mansoura University, 35511, Mansoura, Egypt
     

   Subscribe/Renew Journal


In this study, the electro-chemical behavior of Udimet700 alloys is studied in acidic media at 25°C. It deals with the corrosion inhibition process of nickel–based (Udimet700) alloy in 1M–HCl solution by some organic derivatives. The methods used include electro–chemical frequency modulation technique, electro–chemical impedance spectroscopy, and potentio–dynamic polarization. The derivatives are considered as mixed–type inhibitor depending on potentio–dynamic polarization analysis. Scanning electron microscope examination is executed to study the morphology of Udimet700 surface after immersion in a solution in the case of presence and absence of derivatives. The results of this research reveal that the inhibitors are absorbed by Udimet700 alloy surface and they insulate it from the acidic medium. The compound (C16H17) among the tested organic derivatives plays the best role as an inhibitor of the alloy in 1M–HCl.

Keywords

Corrosion Inhibitors, EIS and EFM, Nickel–Based Alloy, Udimet700, 1M HCl.
Subscription Login to verify subscription
User
Notifications
Font Size


  • J. R. Davis, ‘Nickel, Cobalt, and Their Alloys’ ASM Specialty Handbook: ASM International, Materials Park, OH. p. 442, (2000) https://www.asminternational.org/search/-/journal_ content/56/10192/06178G/PUBLICATION.
  • L. Tan et al., Corros. Sci., 50, 3056 (2008). https://doi.org/10.1016/j.corsci.2008.08.024.
  • H. Kim, D. B. Mitton and R. M. Latanision, Corros. Sci., 52, 801 (2010). https://doi.org/10.1016/j.corsci.2009.10.042.
  • M. Durand-Charre, The Microstructure of Superalloys, ed. C. Press., Boca Raton, FL. (1997). https://trove.nla.gov.au/work/34599779.
  • R. Viswanathan, Corros., 24, 359 (1968). https://doi.org/10.5006/0010-9312-24.11.359.
  • A. K. Misra and F. J. Kohl, NASA Technical Memorandum 83459, Annual Meeting of the Electrochemical Society San Francisco, California (1983).
  • A. K. Misra, Oxid. Met., 25, 129 (1986). https://doi.org/10.1007/BF00655894
  • L. L. Shreir, R. A. Jarman and G. T. Burstein, ‘Corrosion: Metal/ Environment Reactions’, BH-Jordan Hill Oxford, (2000).
  • A. Zarrouk, B. Hammouti, H. Zarrok, M. Bouachrine, K. F. Khaled and S. S. Al-Deyab, Int. J. Electrochem. Sci., 7, 89 (2012). http://www.electrochemsci.org/papers/vol7/7010089.pdf.
  • H. Zarrok, A. Zarrouk, R. Salghi, Y. Ramli, B. Hammouti, S.S. Al-Deyab, E.M. Essassi and H. Oudda, Int. J. Electrochem. Sci, 7, 10338 (2012). http://www.electrochemsci.org/papers/vol7/71010338.pdf.
  • A. Ghazoui, A. Zarrouk, N. Bencaht, R. Salghi, M. Assouag, M. El Hezzat, A. Guenbour and B. Hammouti, J. Chem. Pharm. Res., 6, 704 (2014). http://www.jocpr.com/articles/ new-possibility-of-mild-steel-corrosion-inhibition-by-organic-heterocyclic-compound.pdf
  • R. Ghibate, F. Sabry, Y. Kharbach, Y. KandriRodi, M. K. Skalli, A. Haoudi, O. Senhaji, M. Touzani, R. Taouil, A. Aouniti and B. Hammouti, Int. J. Eng. Res. App., 5, 22 (2015).
  • H. Baeza, M. Guzm’an, P. Ortega and L. Vera, Journal of the Chilean Chemical Society, 48, 23 (2003). https://doi.org/10.4067/S0717-97072003000300004
  • W. A. W. E. Amira, A. A. Rahim, H. Osman, K. Awang and P. B. Raja, Int. J. Electrochem. Sci., 6, 2998 (2011). http:// www.electrochemsci.org/papers/vol6/6072998.pdf 15. S. Ambrish, S. Ashish Kumar and M. A. Quraishi, Open Electrochem. J., 2, 43 (2010). https://doi.org/10.2174/1876505X0100201004
  • M. Z. A. Rafiquee, S. Khan, N. Saxena and M. A. Quraishi, Portugaliae Electrochimica Acta, 25, 419 (2007). https://doi.org/10.4152/pea.200704419
  • J. Q. Xue, M. Wu, J.-X. Li, C.-B. Tang and C.X. Yin, Mater. Sci. Forum, 686, 574 (2011). https://doi.org/10.4028/www.scientific.net/MSF.686.388, https://doi.org/10.4028/www.scientific.net/MSF.686.574
  • S. Bourichi, Y. Kandri Rodi, M. EL Azzouzi, Y. Kharbach, F. Ouazzani Chahdi and A. Aouniti, Journal of Materials and Environmental Sciences (JMES), 8, 1696 (2017). https://www.researchgate.net/publication/314234974_Inhibitive_effect_of_new_synthetized_imidazopyridine_derivatives_for_the_mild_steel_corrosion_in_Hydrochloric_acid_medium.
  • R. W. Bosch, J. Hubrecht, W. F. Bogaerts and B. C. Syrett, Corros., 57, 60 (2001). https://doi.org/10.5006/1.3290331
  • K. Shalabi, Y. M. Abdallah and A. S. Fouda, Res. Chem. Intermed., 41, 4687 (2015). https://doi.org/10.1007/s11164-014-1561-5
  • D. A. Jones, Principles and Prevention of Corrosion, Second ed., Prentice Hall, Upper Saddle River, NJ (1983). https:// www.scribd.com/document/331292177/Denny-a-Jones-Principles-and-Prevention-of-Corrosion
  • M. Kendig and S. Jeanjaquet, J. Electrochem. Soc., 149, B47 (2002). https://doi.org/10.1149/1.1430717
  • J. R. Galvele, J. Electrochem. Soc., 123, 464 (1976). https:// doi.org/10.1149/1.2132857.
  • P. E. Laibinis and G. M. Whitesides, J. Am. Chem. Soc., 114, 9022 (1992). https://doi.org/10.1021/ja00049a038
  • J. R. Macdonald, ‘Impedance 3rd Ed., John Wiley and Sons Inc., New York, 13, 77 (1987). https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=464127
  • N. Labjar, M. Lebrini, F. Bentiss, N. E. Chihib, S. El Hajjaji and C. Jama, Mater. Chem. Phys., 119, 330 (2010). https:// doi.org/10.1016/j.matchemphys.2009.09.006
  • D. Gopi, K. M. Govindaraju and L. Kavitha, J. Appl. Electrochem., 40, 1349 (2010). https://doi.org/10.1007/s10800-010-0092-z
  • T. Tsuru, S. Haruyama and B. Gijutsu, J. Jpn. Soc. Corros. Eng., 27, 573 (1978). https://doi.org/10.3323/jcorr1974.27.11_573
  • Y. Kharbach, A. Haoudi, M. K. Skalli, Y. Kandri Rodi, A. Aouniti, B. Hammouti, O. Senhaji and A. Zarrouk, J. Mater. Environ. Sci., 6, 2906 (2015). https://www.jmaterenvironsci.com/Document/vol6/vol6_N10/342-JMES-1527-2015-Kharbach.pdf
  • Y. M. Abdallah, J. Mol. Liq., 219, 709 (2016). https://doi.org/10.1016/j.molliq.2016.02.104
  • R. W. Bosch and W. F. Bogaerts, Corros., 52, 204 (1996). https://doi.org/10.5006/1.3292115
  • Gamry Echem Analyst Software. Manual, (2003). https://www.gamry.com/assets/Uploads/EchemAnalystSoftwareManual.pdf

Abstract Views: 324

PDF Views: 0




  • Influence of Some Organic Derivatives on the Corrosion Inhibition of Udimet700 Alloy in 1 M HCl Solution

Abstract Views: 324  |  PDF Views: 0

Authors

Hesham Elzanaty
Department of Basic Science, Delta University, 35712, Gamasa, Egypt
Rania Mostafa
Production Engineering & Mechanical Design Department, Mansoura University, 35511, Mansoura, Egypt

Abstract


In this study, the electro-chemical behavior of Udimet700 alloys is studied in acidic media at 25°C. It deals with the corrosion inhibition process of nickel–based (Udimet700) alloy in 1M–HCl solution by some organic derivatives. The methods used include electro–chemical frequency modulation technique, electro–chemical impedance spectroscopy, and potentio–dynamic polarization. The derivatives are considered as mixed–type inhibitor depending on potentio–dynamic polarization analysis. Scanning electron microscope examination is executed to study the morphology of Udimet700 surface after immersion in a solution in the case of presence and absence of derivatives. The results of this research reveal that the inhibitors are absorbed by Udimet700 alloy surface and they insulate it from the acidic medium. The compound (C16H17) among the tested organic derivatives plays the best role as an inhibitor of the alloy in 1M–HCl.

Keywords


Corrosion Inhibitors, EIS and EFM, Nickel–Based Alloy, Udimet700, 1M HCl.

References





DOI: https://doi.org/10.18311/jsst%2F2019%2F22436