Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Characterization of P-type Nickel Oxide (NiO) Thin Films Prepared by RF Magnetron Sputtering


Affiliations
1 Department of Physics, Bharath Institute of Science and Technology, Bharath Institute of Higher Education and Research, Chennai - 600073, Tamil Nadu, India
     

   Subscribe/Renew Journal


In the present work, NiO thin films were prepared on glass and silicon substrates by Radio Frequency (RF) magnetron sputtering technique. NiO films are deposited with the argon flow rate of 10 and 20 sccm at room temperature. The 2 NiO target was used for the deposition of NiO films and was characterized using X-Ray Diffraction (XRD), Photoluminescence (PL), UV-Visible spectroscopy and Hall Effect measurement to study the structural, optical and electrical properties of the films. The XRD pattern shows the small intense peak, revealing the nanocrystallinity of the NiO film. The transmittance spectra indicated the high transmittance in the order of ~90%. The photoluminescence studies indicated the bandgap of 3.52 eV. The Hall Effect studies demonstrated the p-type behaviour of NiO films. The film showed the p-type conductivity and hole concentration ∼5.34 x1019 cm−3 with Hall mobility of ∼612 cm2/V·s for the film deposited at 20 sccm.

Keywords

Photoluminescence and Hall Measurement, Thin Films, UV-Visible Spectroscopy, X-Ray Diffraction, NiO.
Subscription Login to verify subscription
User
Notifications
Font Size


  • W. J. Nam, Z. Gray, J. Stayancho, V. Plotnikov, D. Kwon, S. Waggoner, D. V. Shenai-Khatkhate, M. Pickering, T. Okano, A. Compaan, S. J. Fonash, ECS Trans, 66, 275 (2015). https://doi.org/10.1149/06601.0275ecst
  • C.-C. Wu, C.-F. Yang, Sol. Energy Mater. Sol. Cells, 132, 492 (2015).
  • Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, S.Yang, Angew. Chem. Int. Ed., 53, 1 (2014).
  • N. Park, K. Sun, Z. Sun, Y. Jing, D. Wang, J. Mater. Chem, C 1, 7333 (2013). https://doi.org/10.1039/c3tc31444h
  • C. Magana, D. Acosta, A. Martinez, J. Ortega, Solar Energy, 80, 161 (2006). https://doi.org/10.1016/j.solener. 2005.04.006
  • M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater., 18, 789 (2006). https://doi.org/10.1002/adma.200501717
  • H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films, 236, 27 (1993). https://doi.org/10.1016/0040- 6090(93)90636-4
  • S. Kerli, U. Alver, H. Yaykaşl, Appl. Surf. Sci. 318, 164 (2014). https://doi.org/10.1016/j.apsusc.2014.02.141
  • C. Rameshkumar, R. Subalakshmi, J. Surf. Sci. Technol., 31, 176 (2015).
  • Y. Reddy, B. Ajitha, P. S. Reddy, Mater. Express, 4, 32 (2014). https://doi.org/10.1166/mex.2014.1145
  • D. J. Sharmila, J. Brijitta, J. Surf. Sci. Technol., 33, 115 (2017) https://doi.org/10.18311/jsst/2017/16187
  • X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, Sol. Energy Mater. Sol. Cells, 92, 628 (2008). https:// doi.org/10.1016/j.solmat.2008.01.009
  • T. S. Yang, W. Cho, M. Kim, K.S. An, T.M. Chung, C.G. Kim, J. Vac. Sci. Tech. A, 23, 1238 (2005). https://doi. org/10.1116/1.1875172
  • M. Krunks, J. Soon, T. Unt, A. Mere, V. Mikli, Vacuum, 107, 242 (2014). https://doi.org/10.1016/j.vacuum.2014.02.013
  • N. Wang, C. Q. Liu, B. Wen, H. L. Wang, S.M. Liu, W. P. Chai, Mater. Lett., 122, 269 (2014). https://doi.org/10.1016/j.matlet. 2014.02.040
  • I. Sta, M. Jlassi, M. Hajji, H. Ezzaouia, Thin Solid Films, 555, 131 (2014). https://doi.org/10.1016/j.tsf.2013.10.137
  • H.-L. Chen, Y.-M. Lu, W.-S. Hwang, Surf. Coat. Tech., 198, 138 (2005).
  • Y. A. K. Reddy, A. M. Reddy, A. S. Reddy, P. S. Reddy, J. Nano. Elec. Phys., 4, 04002 (2012).
  • Y. Zhao, H. Wang, C. Wu, Z.F. Shi, F.B. Gao, W.C. Li, G.G. Wu, B. L. Zhang , G. T. Du, Vacuum, 103, 14 (2014). https:// doi.org/10.1016/j.vacuum.2013.11.009
  • I. Manouchehri, S. A. O. AlShiaa, D. Mehrparparvar, M. I. Hamil, R. Moradian, Optik, 127, 9400 (2016). https://doi. org/10.1016/j.ijleo.2016.06.092
  • L. Ai, G. Fang, L. Yuan, N. Liu, M. Wang, C. Li, Q. Zhang, J. Li, X. Zhao, Appl. Surf. Sci., 254, 2401 (2008).
  • S. T. Akinkuade, W. E. Meyer, J. M. Nel, Physica B, 575, 411694 (2019). https://doi.org/10.1016/j.physb.2019.411694
  • V. Gowthami, M. Meenakshi, P. Perumal, R. Sivakumar, C. Sanjeeviraja, Int J Chem Tech Res., 6, 5196 (2014).
  • F. I. Ezema, A. B. C. Ekwealor, R. U. Osuji, J. Optoelectron Adv, M 9, 1898 (2007).
  • A. H. Hammad, M.Sh. Abdel-wahab, S. Vattamkandathil, A. R. Ansari, Physica B, 568, 6 (2019). https://doi. org/10.1016/j.physb.2019.05.012
  • Attieh A. Al-Ghamdi, M. Sh. Abdel-wahab, A. A. Farghali, P.M.Z. Hasan, Mater. Res. Bull., 75, 71 (2016). https://doi. org/10.1016/j.materresbull.2015.11.027
  • J. D. Hwang, T. H. Ho, Mat. Sci. Semicon Proc., 71, 396. (2017). https://doi.org/10.1016/j.mssp.2017.09.002

Abstract Views: 276

PDF Views: 2




  • Characterization of P-type Nickel Oxide (NiO) Thin Films Prepared by RF Magnetron Sputtering

Abstract Views: 276  |  PDF Views: 2

Authors

G. Balakrishnan
Department of Physics, Bharath Institute of Science and Technology, Bharath Institute of Higher Education and Research, Chennai - 600073, Tamil Nadu, India
R. Velavan
Department of Physics, Bharath Institute of Science and Technology, Bharath Institute of Higher Education and Research, Chennai - 600073, Tamil Nadu, India
S. Syed Naser
Department of Physics, Bharath Institute of Science and Technology, Bharath Institute of Higher Education and Research, Chennai - 600073, Tamil Nadu, India

Abstract


In the present work, NiO thin films were prepared on glass and silicon substrates by Radio Frequency (RF) magnetron sputtering technique. NiO films are deposited with the argon flow rate of 10 and 20 sccm at room temperature. The 2 NiO target was used for the deposition of NiO films and was characterized using X-Ray Diffraction (XRD), Photoluminescence (PL), UV-Visible spectroscopy and Hall Effect measurement to study the structural, optical and electrical properties of the films. The XRD pattern shows the small intense peak, revealing the nanocrystallinity of the NiO film. The transmittance spectra indicated the high transmittance in the order of ~90%. The photoluminescence studies indicated the bandgap of 3.52 eV. The Hall Effect studies demonstrated the p-type behaviour of NiO films. The film showed the p-type conductivity and hole concentration ∼5.34 x1019 cm−3 with Hall mobility of ∼612 cm2/V·s for the film deposited at 20 sccm.

Keywords


Photoluminescence and Hall Measurement, Thin Films, UV-Visible Spectroscopy, X-Ray Diffraction, NiO.

References





DOI: https://doi.org/10.18311/jsst%2F2020%2F22591