Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Removal of Phenolic Compounds from Synthetic Solution and Oil Mill Waste Water by Adsorption onto Nanoparticles Synthesized from Phosphate Rock


Affiliations
1 Laboratoire Interdisciplinaire de Recherche en Sciences et Techniques, Université Sultan Moulay Slimane, BP 592, 23000 Béni-Mellal 23000, Morocco
2 Laboratoire d’Hydrobiologie, Écotoxicologie, Assainissement and Changements Globaux (LHEAC,URAC33), Université Cadi Ayyad, BP 2390, Marrakech, Morocco
3 Equipe de Physico-chimie des Matériaux, Ecole Normale Supérieure, Université Cadi Ayyad, Marrakech, Morocco
     

   Subscribe/Renew Journal


In this work, we studied the elimination of phenol compounds from phenolic solutions and Oil Mill Waste Water (OMWW) by adsorption method. The adsorbents used are natural phosphate rock coming from Khouribga phosphate mine (Morocco) and an Apatite synthesized from this phosphate by a dissolution–precipitation reactions. Results obtained showed that the structure of natural phosphate and synthesized apatite are respectively Ca9.55(PO4)4.96F1.96 (CO3)1.283 and (Ca10(OH)2(PO4)6). Synthesized apatite has a higher specific surface than natural phosphate (193.62m2/g). The adsorption study showed that the synthesized apatite can be used as an adsorbent to remove phenol from water with very fast reaction kinetics (about 10 min) and an adsorption capacity equal to 15mg/g. The optimal adsorption capacity was found in low values of temperature and in neutral pH. Adsorption kinetics of phenol solution on the two adsorbents can be described by an equation corresponding to a pseudo second order. Freundlich model fitted well with the adsorption isotherms more than the Langmuir model. Characterization of olive mill wastewater shows that, phenol index equal to 0.39 g/l and chemical oxygen demand COD equal to 158 g/l. The treatment of OMWW by adsorption method on the two adsorbents shows that the use of natural phosphate as adsorbent reduced phenol index by 23% and (COD) by 35% while using synthesized apatite reduced phenol index by 30% and COD by 38%.

Keywords

Adsorption, Apatite Nanoparticles, Oil Mill Waste Water (OMWW), Phenol, Phosphate Rock.
Subscription Login to verify subscription
User
Notifications
Font Size


  • O. M. L. Alharbi, A. l. Basheer, R. A. Khattab and I. Ali. J. Mol. Liq., 263, 442 (2018). https://doi.org/10.1016/j.molliq. 2018.05.029.
  • A. l. Basheer. Chirality, 1 (2017).
  • A. A. Basheer. J. Mol. Liq., 261, 583 (2018). https://doi. org/10.1016/j.molliq.2018.04.021.
  • I. Ali, V. K. Gupta and H. Y. Aboul-Enein. Electrophoresis, 26, 3988 (2005). https://doi.org/10.1002/elps.200500216. PMid:16252323
  • I. Ali, M. Asim and T. A. Khan. Int. J. Environ. Sci. Technol., 10, 377 (2013). https://doi.org/10.1007/s13762-012-0113-z.
  • Al. Basheer and I. Ali, Chirality, 1 (2018).
  • I. Ali, Z. A. Alothman, A. Abdulrahman. Desalin. Water. Treat., 57, 1 (2016). https://doi.org/10.1080/19443994.2015 .1041164
  • E. l. Noureddine, J. Bassem, H. Ahmed, R. Mehrezand, A. Abdelmenef. DST, 47, 17 (2007).
  • H. Yaacoubi, Z. Songlin, M. Mouflih, M. Gouraiand, S. Sebti. Mediterr. J. Chem., 4, 289 (2015). https://doi.org/10.13171/mjc.4.6/0151123/sebti.
  • A. Özgür, Ç. Ferhan. J. Hazard. Mater, 141, 769 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.050. PMid: 16945482.
  • S. Sami, Et. Radhouane. Appl. Environ. Microb., 61, 1098 (1995). https://doi.org/10.1128/AEM.61.3.1098-1103.1995.
  • J. Lidija. Food Chem., 175, 556 (2015). https://doi. org/10.1016/j.foodchem.2014.12.013. PMid: 25577120.
  • O¨. Celalettin, T. Hayrunnisa, S. Serkan, K. Erkan. Clean - Soil, Air, Water, 38, 1152 (2010). https://doi.org/10.1002/clen.201090012.
  • Z. Li, H, Jianxun, Z. Hong, L. Xueping. Chem. Eng. Res. Des., 90, 377 (2012). https://doi.org/10.1016/j.cherd.2011.07.015
  • S. Olga, V. Vincenzo, D. Christophe, N. Wanda, V. Vincenzo. Mater. Sci. Semicond. Process., 80, 104 (2018). https://doi. org/10.1016/j.mssp.2018.02.032.
  • F. Mohammad, A. Abid, N. Orooba, B. Abdulla, F. Areej, B. Kadhim. JKSUES, 31, 131 (2017).
  • B. Chokri, Kh. Moncef, M. Salma, K. Monem, E. Boubaker, F. Jean Francois. J. Environ. Sci., 25, 220 (2013). https://doi. org/10.1016/S1001-0742(12)60037-0.
  • E. Ouabou, A. Anouar, S. Hilali. J. Appl. Biosci., 79, 6867 (2014). https://doi.org/10.4314/jab.v79i0.12
  • G. Sbaiand, M. Loukili. ESJ, 11, 1857 (2015).
  • Ch. Olivier, D. Marie, P. Catherine. Desalination, 249, 865 (2009). https://doi.org/10.1016/j.desal.2009.04.014.
  • M. Achak, N. Ouazzani, L. Mandi. Water Sci. Technol., 22, 421 (2009). https://doi.org/10.7202/037780ar.
  • R. Waseem, L. Jechan, R. Nadeem, L. Yiwei, K. Ki-Hyun, Y. Jianhua. J. Ind. Eng. Chem., 71, 1 (2019). https://doi. org/10.1016/j.jiec.2018.11.024.
  • M. D. Víctor-Ortega, J.M. Ochando-Pulido, A. Martínez- Ferez. Sep. Purif. Technol., 160, 136 (2016). https://doi. org/10.1016/j.seppur.2016.01.023.
  • J. K. Sunil, W. T. Ravi, V. P. Suhas, B. S. Mukesh. Procedia Eng., 51, 300 (2013). https://doi.org/10.1016/j.proeng. 2013.01.040.
  • M. A. Dabhade, M. B. Saidutta, D. V. R. Murthy. Int. J. Environ. Res., 32, 557 (2009).
  • M. Abdelkreem. APCBEE Procedia, 5, 349 (2013). https://doi.org/10.1016/j.apcbee.2013.05.060.
  • S. Zeboudj, M. L. Seiad, A. Namane, D. Hank, A. Hellal. Rev. Microbiol. Ind. San et Environn., 8, 1 (2014).
  • B. Ozkaya, J. Hazard. Mater., B129, 158 (2006).
  • F. Belaib, A. H. Meniai, M. B. Lehocine. Procedia Eng., 18, 1254 (2012). https://doi.org/10.1016/j.egypro.2012.05.141.
  • A. El Gaidoumi, A. Ch. Benabdallah, A. Lahrichi, A. Kherbeche. J. Mater. Environ. Sci., 6, 2247 (2015).
  • C. R. Girish, V. Ramachandra. J. Environ. Res. Develop., 6, 763 (2012).
  • M. Achak, A. Hafidi, N. Ouazzani, S. Sayadi, L. Mandi. J. Hazard. Mater., 166, 117 (2009). https://doi.org/10.1016/j. jhazmat.2008.11.036. PMid:19144464.
  • S. Elabbas, L. Mandi, F. Berrekhis, M. N. Pons, P. Leclerc, N. Ouazzani. J. Environ. Manage., 166, 589 (2016). https://doi. org/10.1016/j.jenvman.2015.11.012. PMid:26598282
  • I. Ali, O. M.L. Alharbi, Z. A. Alothman, A. Abdulrahman. Colloids Surf. B171, 606 (2018). https://doi.org/10.1016/j. colsurfb.2018.07.071. PMid:30103149
  • I. Ali, O. M. L. Alharbi, Z. A. Alothman, A. M. Al-Mohaimeed, A. Abdulrahman. Environ. Res., 170, 389 (2019). https://doi.org/10.1016/j.envres.2018.12.066. PMid: 30623886.
  • I. Ali, O. M. L. Alharbi, A. Tkachev, E. Galunin, A. Burakov, V. A. Grachev. Environ. Sci. Pollut. Res., 25, 7315 (2018). https://doi.org/10.1007/s11356-018-1315-9. PMid: 29359248.
  • I. Ali, Al. Basheer, O. M. L. Alharbi, X. Y. Mbianda, A. Burakov, E. Galunine, I. Burakovae, E. Mkrtchyane, A. Tkachev, V. Grachev. Environ. Int., 127, 160 (2019). https://doi.org/10.1016/j.envint.2019.03.029. PMid:30921668.
  • I. Ali. J. Mol. Liq., 271, 677 (2018). https://doi.org/10.1016/j. molliq.2018.09.021.
  • B. M. Villar da Gama, G. E. do Nascimento, D. C. Silva Sales, J. M. Rodríguez-Díaz, C. M. B. De Menezes Barbosa, M. M. Menezes Bezerra Duarte. J. Clean. Prod., 201, 219 (2018). https://doi.org/10.1016/j.jclepro.2018.07.291.
  • L. Sellaoui, M. Kehili, E. C. Lima, P. S. Thue, A. Bonilla- Petriciolet, A. Ben Lamine, G. L. Dotto, A. Erto. J. Mol. Liq., 274, 309 (2019). https://doi.org/10.1016/j.molliq. 2018.10.098.
  • H. R. Nodeh, W. A. Wan Ibrahim, I.Ali, M. M. Sanagi. Environ. Sci. Pollut. Res., 23, 9773 (2016).
  • I. Ali, Khan, T. A., Hussain, I. Int. J. Environ Eng., 3(1), 48-71 (2011). https://doi.org/10.1504/IJEE.2011.037873.
  • I. Ali, O. M. L. Alharbi, Z. A. Alothman, A. M. Al-Mohaimeed, A. Abdulrahman. Environ. Res., 170, 389 (2019). https://doi.org/10.1016/j.envres.2018.12.066. PMid: 30623886.
  • I. Ali,O. M. L. Alharbi, Z. A. Alothman, A. Abdulrahman and A. M. Al-Mohaimeed. Int. J. Biol. Macromol., 132, 244(2019). https://doi.org/10.1016/j.ijbiomac.2019.03.211. PMid:30930264 .
  • I. Ali, A. Burakov, A. V. Melezhik, A. V. Babkin, I. V. Burakova, E. A. Neskomornaya, E.V. Galunin, A. G. Tkachev, D. V. Kuznetsov. Chemistry Select., 4, 12708 (2019). https://doi.org/10.1002/slct.201902657.
  • N. Hamad Al-Shaalan, I. Ali, Z. A. Alothman, L. H. Al-Wahaibi, H. Alabdulmonem. J. Mol. Liq., 289, 111039 (2019). https://doi.org/10.1016/j.molliq.2019.111039.
  • A. Burakova, T. Dyachkova, A. Rukhov, E. Tugolukov, E. Galunin, A. Tkachev, Al. Basheer, I. Ali. J. Mol. Liq., 253, 340 (2018). https://doi.org/10.1016/j.molliq.2018.01.062,
  • I. Ali, Z. A. Alothman, A. Abdulrahman. J. Mol. Liq., 241, 123 (2017). https://doi.org/10.1016/j.molliq.2017.06.005.
  • I. Ali, O. M. L. Alharbi, Z. A. Alothman, A. Y. Badjah, A. Abdulrahman, A. l. Basheer. J. Mol. Liq., 250, 1 (2018). https://doi.org/10.1016/j.molliq.2017.11.163,
  • I. Ali, M. Asim and T. Alam Khan. J. Environ. Manage., 113, 170 (2012). https://doi.org/10.1016/j.jenvman.2012.08.028. PMid:23023039.
  • V. K. Gupta, I. Ali. Environmental Water Advances in Treatment, Remediation and Recycling, 93 (2013). https://doi.org/10.1016/B978-0-444-59399-3.00003-9.
  • G. De, L. Giusy, G. Mariangela, N. Michele. Sustainable Materials and Technologies (SM&T), 9, 10 (2016).
  • M. Masoud, H. Maryam, D. Mohammad, K. Kamaladdin, K. Vinod, V. Yasser, S. Hooshmand. Data Brief, 20, 957 (2018).
  • B. Hiba, F. B. Maged, A. Y. Saad, O. Mohamed, G. Aleksander. J. Environ. Chem. Eng., 6, 11347 (2018).
  • S. Saoiabi, A. Gouza, H. Bouyarmane, A. Laghzizil, A. Saoiabi. J. Environ. Chem. Eng., 4, 428 (2016). https://doi. org/10.1016/j.jece.2015.11.036.
  • B. Hassen, N. Habib, D. Mongi, B. Béchir. Int. J. Eng. Res. Appl., 4, 171 (2014).
  • S. Bailliez, A. Nzihou, E. Beche, G. Flamant. Process. Saf. Environ., 82, 175 (2004). https://doi. org/10.1205/095758204322972816.
  • H. Yaacoubi, O. Zidani, M. Mouflih, M. Gourai, S. Sebti. Procedia Eng., 83, 386 (2014). https://doi.org/10.1016/j.proeng. 2014.09.039.
  • S. A. Atef, M. Waleed. Int. J. Phys. Sci., 4, 172 (2009).
  • H. Bouyarmane, S. El Asri, A. Rami, C. Roux, M. A. Mahly, A. Saoiabi, T. Coradin, A. Laghzizil. J. Hazard. Mater., 181, 736 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.074. PMid:20570437.
  • J. C. Elliott, R. Wilson, S. E. P. Dowker. Adv. X-Ray Anal., 45, 172 (2002).
  • H. Bouyarmane, S. Saoiabi, A. Laghzizil, A. Saoiabi, A. Rami, M. El Karbane. Desalin. Water. Treat., 52, 7265 (2014). https://doi.org/10.1080/19443994.2013.831797.
  • S. El Asri, A. Laghzizil, A. Saoiabi, A. Alaoui, K. El Abassi, R. M’hamdi. Colloids Surf. A Physicochem. Eng. Asp., 350, 73 (2009). https://doi.org/10.1016/j.colsurfa.2009.09.006.
  • S. Brunauer, P. H. Emmett, E. Teller. J. Am. Chem. Soc., 60, 309 (1938). https://doi.org/10.1021/ja01269a023.
  • I. Langmuir. J. Amer.Chem.Soc., 40, 13 (1918). https://doi. org/10.1021/ja02242a004.
  • H. Freundlich. Journal of Chemistry and Education, 3, 1455 (1926). https://doi.org/10.1021/ed003p1454.2.
  • Q. Hui, L. Lu, P. Bing-cai, Z. Qing-jian, Z. Wei-ming, Z. Quan-xing. J. Zhejiang.Univ-SC. A. 10, 716 (2009).
  • L. C. Margarita, S. R. Eduardo, B. Refugio, R. García, C. C. Felipe deJesús, G. G. María Teresa A. R. Mónica María D. G. Nancy Elizabeth. Desalin. Water Treat., 1, 1 (2014).
  • M. Mouflih, A. Aklila, S. Sebtib, J. Hazard. Mater., 119, 183 (2005). https://doi.org/10.1016/j.jhazmat.2004.12.005. PMid:15752864.
  • A. Dobrowski, V.A. Tertykh. Stud. Surf. Sci. Catal., 99, 304 (1996).
  • S. Diallo-Garciaa, M. Ben Osman, J. M. Krafft, S. Boujdaya, C. Guylènea. Catal. Today, 226, 81 (2014). https://doi. org/10.1016/j.cattod.2013.11.041.
  • S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas. Biomaterials, 23, 1065(2002). https://doi. org/10.1016/S0142-9612(01)00218-6,
  • C. H. Giles, T. H. Mac Ewan, S. N. Nakhwa, D. Smith. J. Chem. Soc., 786, 3973 (1960). https://doi.org/10.1039/jr9600003973.

Abstract Views: 282

PDF Views: 1




  • Removal of Phenolic Compounds from Synthetic Solution and Oil Mill Waste Water by Adsorption onto Nanoparticles Synthesized from Phosphate Rock

Abstract Views: 282  |  PDF Views: 1

Authors

Rabia Benaddi
Laboratoire Interdisciplinaire de Recherche en Sciences et Techniques, Université Sultan Moulay Slimane, BP 592, 23000 Béni-Mellal 23000, Morocco
Khalifa El harfi
Laboratoire Interdisciplinaire de Recherche en Sciences et Techniques, Université Sultan Moulay Slimane, BP 592, 23000 Béni-Mellal 23000, Morocco
Faissal Aziz
Laboratoire d’Hydrobiologie, Écotoxicologie, Assainissement and Changements Globaux (LHEAC,URAC33), Université Cadi Ayyad, BP 2390, Marrakech, Morocco
Fatima Berrekhis
Equipe de Physico-chimie des Matériaux, Ecole Normale Supérieure, Université Cadi Ayyad, Marrakech, Morocco
Naaila Ouazzani
Laboratoire d’Hydrobiologie, Écotoxicologie, Assainissement and Changements Globaux (LHEAC,URAC33), Université Cadi Ayyad, BP 2390, Marrakech, Morocco

Abstract


In this work, we studied the elimination of phenol compounds from phenolic solutions and Oil Mill Waste Water (OMWW) by adsorption method. The adsorbents used are natural phosphate rock coming from Khouribga phosphate mine (Morocco) and an Apatite synthesized from this phosphate by a dissolution–precipitation reactions. Results obtained showed that the structure of natural phosphate and synthesized apatite are respectively Ca9.55(PO4)4.96F1.96 (CO3)1.283 and (Ca10(OH)2(PO4)6). Synthesized apatite has a higher specific surface than natural phosphate (193.62m2/g). The adsorption study showed that the synthesized apatite can be used as an adsorbent to remove phenol from water with very fast reaction kinetics (about 10 min) and an adsorption capacity equal to 15mg/g. The optimal adsorption capacity was found in low values of temperature and in neutral pH. Adsorption kinetics of phenol solution on the two adsorbents can be described by an equation corresponding to a pseudo second order. Freundlich model fitted well with the adsorption isotherms more than the Langmuir model. Characterization of olive mill wastewater shows that, phenol index equal to 0.39 g/l and chemical oxygen demand COD equal to 158 g/l. The treatment of OMWW by adsorption method on the two adsorbents shows that the use of natural phosphate as adsorbent reduced phenol index by 23% and (COD) by 35% while using synthesized apatite reduced phenol index by 30% and COD by 38%.

Keywords


Adsorption, Apatite Nanoparticles, Oil Mill Waste Water (OMWW), Phenol, Phosphate Rock.

References





DOI: https://doi.org/10.18311/jsst%2F2020%2F23780