Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

SiO2 Dielectric Micro-Pattern Layer for Solar Cell Application


Affiliations
1 VNU University of Engineering and Technology, 144 Xuann Thuy Road, Cau Giay District, Hanoi, Viet Nam
     

   Subscribe/Renew Journal


Micro-patterns were created in a silicon dioxide (SiO2) dielectric layer (called SiO2 dielectric micro-pattern layer) via the photolithography and dry etching techniques. The SiO2 dielectric micro-pattern layer was utilized as an antireflection layer for solar cell application. The influences of structure of micro-pattern on the optical and electrical characteristics of solar cell were also investigated in detail. An improved performance of the GaAs solar cell by combination of antireflection coating layers and micro-pattern was observed. An enhancement in short circuit current density of 7.5% and conversion efficiency (about 1.2% absolute) were achieved in a cell coupling with the SiO2 dielectric 4 μm period micro-pattern layer compared to those of a reference cell. The influences of the SiO2 dielectric micro-pattern layer on other performance characteristics such as open circuit voltage and fill factor were not clearly observed. Light beam induced current measurement was also carried out to indicate the contribution of the light trapping and light scattering effects on the cell performance.

Keywords

Antireflection, Micro-Pattern, SiO2 Dielectric Layer, Solar Cell.
Subscription Login to verify subscription
User
Notifications
Font Size


  • K. S. Han, J. H. Shin, W.Y. Yoon and H. Lee, Sol. Energy Mater. Sol. Cells, 95, 288 (2011).
  • H. Bencherif, L. Dehimi, F. Pezzimenti and F. G. Corte, Optik. 182, 682 (2019).
  • J. H. Selj, T. T. Mongstad, R. Sondena, and E. S. Marstein, Sol. Energy Mater. Sol. Cells, 95, 2576 (2011).
  • B. Paivanranta, P. Baroni, T. Scharf, W. Nakagawa, M. Kuittinen and H. P. Herzig, Microelectron. Eng.,85, 1089 (2008).
  • D. Li, F. Huang and S. Ding, Appl. Surf. Sci., 257, 9752 (2011).
  • G. Zhang, J. Zhao and M. A. Green, Sol. Energy Mater. Sol. Cells, 51, 393 (1998).
  • S. Jung, Y. Kim, S. Kim and S. Yoo, Curr. Appl. Phys., 11, 538 (2011).
  • X. Yan, N. Chen, F. Suhaimi, L. Zhang, X. Gong, X. Zhang and S. Duttagupta, Appl. Opt., 58, E1 (2019).
  • G. Womack, K. Isbilir, F. Lisco, A. Taylor and J. M. Walls, Surf. Coat. Tech., 358, 76 (2019).
  • I. Yu, S. Wu, L. Dumont, C. Labbé and F. Gourbilleau, J. Rare Earths, 37, 515 (2019).
  • C. Chen, H. Tsai, Y. Wang, T. Su, C. Yang, W. Lin, Z. Lin, J. Huang and Y. Chueh, J. Mater. Chem. A., 7, 11452 (2019)
  • T. Sertel, Y. Ozen, V. Baran, S. Ozcelik, J. Alloys Compd., 806, 439 (2019).
  • J. Zhao, A. Wang, M. A. Green and F. Ferrazza, Appl. Phys. Lett.,73, 1991 (1998).
  • M. Tao, W. Zhou, H. Yang, and L. Chen, Appl. Phys. Lett., 91, 081118 (2007).
  • V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych and P. Paneck, Sol. Energy Mater. Sol. Cells, 72, 291 (2002).
  • R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo and D. Knipp, Opt. Exp., 17, 23058 (2009).
  • J. Zhao, A. Wang, P. Altermatt and M. A. Green, Appl. Phys. Lett., 66, 3636 (1995).
  • W. Qarony, M. I. Hossain, A.Salleo, D. Knipp and Y. H. Tsang, Mater. Tod. Ener., 11, 106 (2019).
  • D. Eisenhauer, C. T. Trinh, D. Amkreutz and C. Becker, Sol. Energy Mater. Sol. Cells, 200, 109928 (2019).
  • D. Canteli, I. Torres, S.Fernández, J. D. Santos, M. Morales and C. Molpeceres, Appl. Sur. Sci., 463, 775 (2019).
  • M. K. Basher, M. K. Hossain and M. A. R. Akand, Optik. 176, 93 (2019).
  • Y. Chang, Z. Li, H. Kuo, T. Lu, S. Yang, L. Lai, L. Lai and S. Wang, Semicond. Sci. Technol., 24, 085007 (2009).
  • P. Qu, K. Wang, J. Li, S. Wang, and W. Wei, Mater. Exp.,10, 556 (2020).
  • Y. Sekman, N. Felde, L. Ghazaryan, A. Szeghalmi, and S. Schröder, Appl. Opt., 59, A143 (2020).
  • J. Wang, H. Zhang, L. Wang, K. Yang, L. Cang, X. Liu, and W. Huang, ACS Appl. Ener. Mater., 3, 4484 (2020).
  • Chen, H. Yang, M. Tao and W. Zhou, Proc. SPIE 7046, Opt. Mod. Meas. Sol. Ener. Sys. II, 704608 (2008).

Abstract Views: 269

PDF Views: 1




  • SiO2 Dielectric Micro-Pattern Layer for Solar Cell Application

Abstract Views: 269  |  PDF Views: 1

Authors

Nguyen Dinh Lam
VNU University of Engineering and Technology, 144 Xuann Thuy Road, Cau Giay District, Hanoi, Viet Nam

Abstract


Micro-patterns were created in a silicon dioxide (SiO2) dielectric layer (called SiO2 dielectric micro-pattern layer) via the photolithography and dry etching techniques. The SiO2 dielectric micro-pattern layer was utilized as an antireflection layer for solar cell application. The influences of structure of micro-pattern on the optical and electrical characteristics of solar cell were also investigated in detail. An improved performance of the GaAs solar cell by combination of antireflection coating layers and micro-pattern was observed. An enhancement in short circuit current density of 7.5% and conversion efficiency (about 1.2% absolute) were achieved in a cell coupling with the SiO2 dielectric 4 μm period micro-pattern layer compared to those of a reference cell. The influences of the SiO2 dielectric micro-pattern layer on other performance characteristics such as open circuit voltage and fill factor were not clearly observed. Light beam induced current measurement was also carried out to indicate the contribution of the light trapping and light scattering effects on the cell performance.

Keywords


Antireflection, Micro-Pattern, SiO2 Dielectric Layer, Solar Cell.

References





DOI: https://doi.org/10.18311/jsst%2F2020%2F24109