Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Scratch Resistance of High Velocity Oxy-Fuel Sprayed WC-20% Co Coatings Reinforced with Carbon Nanotubes


Affiliations
1 School of Mechanical Engineering, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India
     

   Subscribe/Renew Journal


Tungsten Carbide-20 weight % Cobalt (WC-20 wt% Co) coatings were extensively used material to achieve a combination of extreme hardness and excellent strength. Hence, an effort has been made to improve the toughening properties of WC-Co coatings through reinforcement of Carbon Nano-Tubes (CNTs) using High-Velocity Oxy-Fuel (HVOF) spraying process. In this work, 2 wt%, 4 wt%, and 6 wt% of CNTs were blended by the ball milling process with WC-Co powders. These composed powders were deposited by HVOF process on to the plain mild steel substrates. The scratch test analysis on as-sprayed coatings showed that due to the addition of CNTs on WC-Co coatings, the resistance to penetrate the coating surface increased. Also, by varying the percentage of CNTs in the coating system, the pores were reduced. This phenomenon is attributed to the toughening mechanism by forming a CNT bridge which avoids the formation of internal cracks.

Keywords

Carbon Nano-Tubes (CNTs), CNT Bridging, High Velocity Oxy-Fuel (HVOF) Process , Porosity Analysis, Scratch Track.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Z. G. Ban, L. L. Shaw. J. Therm. Spray Technol., 12, 112 (2001). https://doi.org/10.1361/105996303770348564.
  • C. Bartuli, T. Valente, F. Cipri, E. Bemporad, Mario Tului. J. Therm. Spray Technol., 14, 187 (2005). https://doi. org/10.1361/10599630523746.
  • G. E. Kim, Carl C. Koch, Nanostructured Materials: Processing. Proper. and Applica., 91 (1999). https://doi. org/10.1016/S0165-1684(98)00219-9,
  • S. Das, T. K. Bandyopadhyay, S. Ghosh, A. B. Chattopadhyay, P. P. Bandyopadhyay. Metall Mater Trans A., 34, 1909 (2003). https://doi.org/10.1007/s11661-003-0156-3.
  • L. M. Berger. Applications of hard metals as thermal spray coatings. Int. J. Refract. Met. Hard Mater, 49, 350 (2015). https://doi.org/10.1016/j.ijrmhm.2014.09.029.
  • D. A. Stewart, P. H. Shipway, D. G. McCartney. Wear, 225 (1999). https://doi.org/10.1016/S0043-1648(99)00032-0.
  • F. Zhang, J. Shen, J. Sun. Mater. Sci. Eng. A, 381, 86 (2004). https://doi.org/10.1016/j.msea.2004.03.061.
  • P. H. Shipway, D.G. McCartney, T. Sudapasert. Wear, 259, 820 (2005). https://doi.org/10.1016/j.wear.2005.02.059.
  • R. H. Baik, J. H. Kimb, B. G. Seong. Mater. Sci. Eng. A, 449, 846 (2007). https://doi.org/10.1016/j.msea.2006.02.295.
  • Y. Qiao, T. E. Fischer, A. Dent. Surf. Coat. Technol. 172, 24 (2003). https://doi.org/10.1016/S0257-8972(03)00242-1.
  • S. Y. Park, M. C. Kim, C. G. Park. Mater. Sci. Eng. A, 449, 894 (2007). https://doi.org/10.1016/j.msea.2006.02.444.
  • J. He, J. M. Schoenung. Mater. Sci. Eng. A, 336, 274 (2002). https://doi.org/10.1016/S0921-5093(01)01986-4.
  • W. Zorawski. Surf. Coat. Technol., 220, 276 (2013). https://doi.org/10.1016/j.surfcoat.2012.11.007.
  • B. Liu, Z. Zeng, Y. Lin. Surf. Coat. Technol., 203, 3610 (2009). https://doi.org/10.1016/j.surfcoat.2009.05.035.
  • G. Subhash, A. P. Awasthi, C. Kunka, P. Jannotti, M. Devries. Scr. Mater, 123, 158 (2016). https://doi.org/10.1016/j.scriptamat. 2016.06.012.
  • M. A. Rodriguez, L. Gil, S. Camero, N. Frety, Y. Santana, Surf. Coat. Technol., 258, 38 (2014). https://doi.org/10.1016/j. surfcoat.2014.10.014.
  • J. Liao, M. J. Tan. Powder Technol. 208, 42 (2011). https:// doi.org/10.1016/j.powtec.2010.12.001.
  • T. Peng, I. Chang. Powder Technol, 266, 7, (2014). https:// doi.org/10.1016/j.powtec.2014.05.068.
  • E. Lopez, F. Beltzung, G. Zambelli. J. Mater Sci. Lett., 8, 346 (1989). https://doi.org/10.1007/BF00725519.
  • S. Hazra, P. Bandyopadhyay. Mater. Des., 35, 243 (2012). https://doi.org/10.1016/j.matdes.2011.09.014.
  • S. C. Jambagi, S. Kar, P. Brodard, P. Bandyopadhyay. Mater. Des., 112, 392 (2016). https://doi.org/10.1016/j.matdes. 2016.09.095.
  • S. C. Jambagi. J. Alloys Compd. 728, 126 (2017). https://doi.org/10.1016/j.jallcom.2017.08.262.
  • D. B. Fowler, R. Russ. Advan. Mater Proc. 11, 41 (1990).
  • A. Guzanova, J. Brezinova, D. Dragonovska, P. O. Maruschak. Vyzkumne Clanky, 63(2), 86 (2019). https://doi.org/10.2478/kom-2019-0011.
  • R. Goyal, V. Chawla, B. S. Sidhu. Asian Rev. of Mechan. Engg., 3, (2014).
  • P. K. Aw, A. L. K. Tan, T. P. Tan, J. Qiu. Thin Solid Films, 516, 5710 (2008). https://doi.org/10.1016/j.tsf.2007.07.065.
  • M. Shanmuga, J. Priyan. Mater. Sci. and Sur. Engg., 5(1), 509 (2017).
  • Y. Chen, K. Balani, A. Agarwal. Appl. Phys. Lett., 92, 011916 (2008). https://doi.org/10.1063/1.2821108.
  • S. C. Jambagi, S. Kar, P. Brodard, P. P. Bandyopadhyay. Mater. Des., 112, 392 (2016). https://doi.org/10.1016/j.matdes. 2016.09.095.
  • D. Mohanty, S. Kar, S. Paul, P. P. Bandyopadhyay. Mater. Des., 156, 340 (2018). https://doi.org/10.1016/j.matdes. 2018.06.054.
  • L. Xu, J. Song, X. Zhang, C. Deng, M. Liu, K. Zhou. Coatings, 8, 393 (2018). https://doi.org/10.3390/coatings8110393
  • S. C. Jambagi, N. Sarkar, P. P. Bandyopadhyay. J. Eur. Ceramic Soc., 35, 989 (2015). https://doi.org/10.1016/j.jeurceramsoc. 2014.10.017.
  • S. C. Jambagi. J. Alloy Compo., 728, 126 (2017). https://doi. org/10.1016/j.jallcom.2017.08.262.
  • S. Priyadershini, O. S. A. Rahman, K. K. Pandey, A. K. Keshri. J. Ceram. Inter., (2018). https://doi.org/10.1016/j. ceramint.2018.12.043,
  • T. Bai, T. Xie. Mater. Chem. Phys., 201, 113 (2017). https:// doi.org/10.1016/j.matchemphys.2017.08.018.
  • Y. Y. Ozbek, N. Canikoglu, M. Ipek. Acta Phys. Pol. A., 129, 600 (2016). https://doi.org/10.12693/APhysPolA.129.600.

Abstract Views: 240

PDF Views: 1




  • Scratch Resistance of High Velocity Oxy-Fuel Sprayed WC-20% Co Coatings Reinforced with Carbon Nanotubes

Abstract Views: 240  |  PDF Views: 1

Authors

G. Mohammed Thalib Basha
School of Mechanical Engineering, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India
B. Venkateshwarlu
School of Mechanical Engineering, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India

Abstract


Tungsten Carbide-20 weight % Cobalt (WC-20 wt% Co) coatings were extensively used material to achieve a combination of extreme hardness and excellent strength. Hence, an effort has been made to improve the toughening properties of WC-Co coatings through reinforcement of Carbon Nano-Tubes (CNTs) using High-Velocity Oxy-Fuel (HVOF) spraying process. In this work, 2 wt%, 4 wt%, and 6 wt% of CNTs were blended by the ball milling process with WC-Co powders. These composed powders were deposited by HVOF process on to the plain mild steel substrates. The scratch test analysis on as-sprayed coatings showed that due to the addition of CNTs on WC-Co coatings, the resistance to penetrate the coating surface increased. Also, by varying the percentage of CNTs in the coating system, the pores were reduced. This phenomenon is attributed to the toughening mechanism by forming a CNT bridge which avoids the formation of internal cracks.

Keywords


Carbon Nano-Tubes (CNTs), CNT Bridging, High Velocity Oxy-Fuel (HVOF) Process , Porosity Analysis, Scratch Track.

References





DOI: https://doi.org/10.18311/jsst%2F2020%2F24184