Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Contribution of Seven Electroplating Factors on Some Properties of Zn-Ni Coating on Medium Carbon Steel using Taguchi’s L27 Orthogonal Array


Affiliations
1 Department of Metrology and Quality Control, Technical Institute of Mechanical and Electrical Engineering, Damascus University, Damascus, Syrian Arab Republic
     

   Subscribe/Renew Journal


The protective Zn-alloy coating enhances the carbon steels’ corrosion resistance. Seven factors of Zn-Ni coating electroplating on medium carbon steel were optimized using Taguchi L27 (37) orthogonal array. The impact of nickel chloride concentration (N), distance factor between anode and cathode (X), plating process time (P), bath temperature (T), deposition current density (I), substrate hardness (H), and substrate roughness (R) on the corrosion current density (ICorr) and the coating thickness were examined. Two different samples were also morphologically studied. Results indicated that N:20 g l-1; X:9 cm; P:20 min; T:45 °C; I:3 A dm-2; H:44 HRC; and R:P500 can produce Zn-Ni coating with the highest corrosion resistance (lowest ICorr) with inhibition efficiency of 96.5%. Among factors, T, P, H, and N had the highest impact on ICorr with a total percentage contribution of about 60%. In addition, the thickness was mainly affected by I, P, and H, with a total percentage contribution >90%. The optimal combination for lowest ICorr resulted in a smooth and more homogenous and compact structure of coating without microcracks. Higher microhardness was also obtained due to the high nickel content in Zn-Ni coating (14.7%wt). However, the worst combination gave semi-spherical-shaped crystallites with non-uniform distribution of particles.

Keywords

Corrosion Resistance, Electroplating, Medium Carbon Steel (CK45), Potentiodynamic Polarization, Taguchi’s Orthogonal Array, Zn-Ni Coating.
Subscription Login to verify subscription
User
Notifications
Font Size


  • I. G. Akande, O. S. I. Fayomi and O. O. Oluwole. Energy Procedia, 157, 375 (2019). https://doi.org/10.1016/j.egypro.2018.11.202.
  • K. Holmberg and A. Matthews. Coatings tribology properties, mechanisms, techniques and applications in surface engineering, Amsterdam: Elsevier (2009).
  • P. M. Groover. Fundamentals of modern manufacturing: Materials, processes and systems, New York: WILEY (2010).
  • W. Giurlani, G. Zangari, F. Gambinossi, M. Passaponti, E. Salvietti, F. Benedetto, S. Caporali and M. Innocenti. Coatings, 8, 260 (2018). https://doi.org/10.3390/coatings8080260
  • A. A. Tracton. Coatings materials and surface coatings, London and New York: CRC press (2007). https://doi.org/10.1201/9781420044058.
  • L. Zeng, J. C. Brown, W. M. Smith, L. Haylock, H. R. Gurrola, E. Monserratt and D. Youngblood. L.M. Corporation, USA, (2006).
  • K. S. Rajagopalan. Doctoral Thesis, McGill University (2012).
  • I. Vijey, Subba, V. B. Rao, S. V. C., Murthy and R. D. Yadav. J. Mate. Sci. Surf. Eng., 6, 792 (2018).
  • R. Asseli, M. Benaicha, S. Derbal, M. Allam and O. Dilmi. J. Electroanal. Chem., (2019). https:doi.org/10.1016/j.jelechem.2019.113261.
  • Z. Feng, Q. Li, J. Zhang, P. Yang, H. Song and M. An. Surf. Coat. Technol. https://doi.org/10.1016/j.surfcoat.2015.03.020 (2015).
  • M. Kwon, D. Jo, H. S. Cho, T. H. Kim, J. Park and M. J. Park. Surf. Coat. Technol., 288, 163 (2016). https://doi.org/10.1016/j.surfcoat.2016.01.027.
  • O. Constantin and P. Moldovan. U.P.B. Sci. Bull., 78, 185 (2016).
  • B. Bahadormanesh, M. Ghorbani and L. N. Kordkolaei. Appl. Surf. Sci., 44, 101 (2017). https://doi.org/10.1016/j.apsusc.2017.01.251.
  • O. K. Nayana, A. S. Prashanth, V. T. Venkatesha and M. Pandurangappa. Surf. Eng., 35, 1061 (2019). https://doi.org/10.1080/02670844.2019.1588487.
  • B. Fotovvati, N. Namdari and A. Dehghanghadikolaei. Manuf. Mater. Process., 3. 10.3390/jmmp3010028 (2019). https://doi.org/10.3390/jmmp3010028.
  • V. V. Sviridov, T. V. Gaevskaya, L. I. Stepanova and T. N. Vorobyova. BSU: Minsk (2003).
  • Y. Bai, Z. Wang, X. Li, G. Huang, C. Li and Y. Li. Mater., 11, 853 (2018). https://doi.org/10.3390/ma11050853. PMid: 29883391. PMCid: PMC5978230.
  • X. Zhai, Y. Ren, N. Wang, F. Guan and M. Agievich. Mol., 24 (2019). https://doi.org/10.3390/molecules24101974. PMid: 31121968, PMCid: PMC6572311.
  • D. C. Montgomery. Design and analysis of experiments, New York: Wiley (2008).
  • S. T. Aruna, P. V. K. Srikanth, M. Ahamad, S. Latha and K. S. Rajam. Port. Electrochim. Acta, 29, 23 (2011). https://doi.org/10.4152/pea.201101023.
  • A. Jegan and R. Venkatesan. Int. J. Miner. Metall. Mater., 20, 479 (2013). https://doi.org/10.1007/s12613-013-0754-z.
  • R. Mousavi, M. Esmailzadeh, M. E. Bahrololoom and F. Deflorian. Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab050a
  • K. H. Hou, J. L. Lee, T. T. Chen and S. L. Kuo. J. C. C. I. T., 34 (2016).
  • T. Arai, et al. Heat treating, 10th edn. ASM Handbook, USA (2002).
  • V. G. Pleshivtsev, G. A. Filippov, Pak, A. Yu. and O.V. Livanova. Metallurgist., 53, 502 (2009). https://doi.org/10.1007/s11015-009-9188-2
  • A. Berradja. Electrochemical techniques for corrosion and tribocorrosion monitoring: Methods for the assessment of corrosion rates. In: Corrosion Inhibitors; Singh, A., Ed.; Intech: Rijeka, Croatia, p. 1-27. (2019). https://doi.org/10.5772/intechopen.86743.
  • S. Ishra, Z. Khan, A. Siddiquee, I. Badruddin, A. Algahtani, S. Javaid and R. Gupta. Math., 7, 847 (2019). https://doi.org/10.3390/math7090847.
  • M. A. M. Marques and C. A. Neto. Int. J. Appl. Sci. Technol., 5, 46 (2015).
  • S. Rao, P. Samant, A. Kadampatta and R. Shenoy. Int. J. Sci. Eng. Res., 4, 621 (2013).
  • M. Pervez, F. Shafiq, Z. Sarwar and M. Jilani. Mater., 11, 426 (2018). https://doi.org/10.3390/ma11030426. PMid: 29543724, PMCid: PMC5873005.
  • K. Nozawa, H. Nishihara and K. Aramaki. Corros. Sci., 39, 1625 (1997). https://doi.org/10.1016/S0010938X(97)00065-6.
  • G. Taguchi, S. Chowdhury and Y. Wu. Taguchi’s quality engineering handbook, New York: Wiley (2005). https://doi.org/10.1002/9780470258354.
  • S. K. Das and P. Sahoo. Mater. Des., 32, 2228 (2011). https:// doi.org/10.1016/j.matdes.2010.11.028
  • M. M. Abou-Krisha. Appl. Surf. Sci., 252, 1035 (2015). https://doi.org/10.1016/j.apsusc.2005.01.161.
  • O. K. Al-Duaij, M. M. Abou-Krisha and M. I. Attia. Int. J. Electrochem. Sci., 12, 11972 (2017). https://doi.org/10.20964/2017.12.62.
  • A. C. Hegde, K. Venkatakrishna and N. Eliaz. Surf. Coat. Technol., 205, 2031 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.102.
  • N. Eliaz, K. Venkatakrishna and A. C. Hegde. Surf. Coat. Technol., 205, 1969 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.077.
  • Y. F. Jiang, C. Zhai, L. Liu, Y. Zhu and W. Ding. Surf. Coat. Technol., 191, 393 (2005). https://doi.org/10.1016/j.surfcoat.2004.03.046.
  • C. A. M. Dutra, J. W. J. Silva and R. Z. Nakazato. Mater. Sci. Appli., 4, 644 (2013). https://doi.org/10.4236/ msa.2013.410079.

Abstract Views: 303

PDF Views: 1




  • Contribution of Seven Electroplating Factors on Some Properties of Zn-Ni Coating on Medium Carbon Steel using Taguchi’s L27 Orthogonal Array

Abstract Views: 303  |  PDF Views: 1

Authors

Basem Ammar
Department of Metrology and Quality Control, Technical Institute of Mechanical and Electrical Engineering, Damascus University, Damascus, Syrian Arab Republic

Abstract


The protective Zn-alloy coating enhances the carbon steels’ corrosion resistance. Seven factors of Zn-Ni coating electroplating on medium carbon steel were optimized using Taguchi L27 (37) orthogonal array. The impact of nickel chloride concentration (N), distance factor between anode and cathode (X), plating process time (P), bath temperature (T), deposition current density (I), substrate hardness (H), and substrate roughness (R) on the corrosion current density (ICorr) and the coating thickness were examined. Two different samples were also morphologically studied. Results indicated that N:20 g l-1; X:9 cm; P:20 min; T:45 °C; I:3 A dm-2; H:44 HRC; and R:P500 can produce Zn-Ni coating with the highest corrosion resistance (lowest ICorr) with inhibition efficiency of 96.5%. Among factors, T, P, H, and N had the highest impact on ICorr with a total percentage contribution of about 60%. In addition, the thickness was mainly affected by I, P, and H, with a total percentage contribution >90%. The optimal combination for lowest ICorr resulted in a smooth and more homogenous and compact structure of coating without microcracks. Higher microhardness was also obtained due to the high nickel content in Zn-Ni coating (14.7%wt). However, the worst combination gave semi-spherical-shaped crystallites with non-uniform distribution of particles.

Keywords


Corrosion Resistance, Electroplating, Medium Carbon Steel (CK45), Potentiodynamic Polarization, Taguchi’s Orthogonal Array, Zn-Ni Coating.

References





DOI: https://doi.org/10.18311/jsst%2F2020%2F26019