Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Investigation of the Effect of Graphene Nanoplatelet content on Flexural Behavior, Surface Roughness and Water Absorption of a Graphene Nanoplatelets Reinforced Epoxy Nanocomposites


Affiliations
1 School of Mechanical Engineering, Vellore Institute of Technology, Vellore – 632014, Tamil Nadu, India
     

   Subscribe/Renew Journal


In the present work, the effect of Graphene nanoPlatelets (GnP) content on the flexural, surface roughness, and water absorption behavior of a GnP reinforced epoxy composite was investigated. Different wt.% of GnP (0.25, 0.5, 0.75, and 1 wt.%) was added into the epoxy matrix through the sonication method followed by the ball milling. The results indicate a significant enhancement in the flexural properties of the epoxy nanocomposite with the addition of GnP in the epoxy matrix. The optimum enhancement in the properties was obtained at 0.25 wt.% GnP incorporated epoxy composites. The increase in flexural strength and flexural modulus results were noticed as 42.7% and 49.2% when compared with neat epoxy. The surface roughness value for the loading of 0.25 wt.% of GnP into the epoxy showed a drop of 48.7% when compared with that of the neat epoxy sample. The loading of 0.25 wt.% of GnP into the epoxy also reduces the water absorption from 0.125% for the neat epoxy sample to 0.067% for the composite sample. The Scanning Electron Microscope (SEM) images of the fractured surface (flexural samples) of the GnP embedded epoxy composites show the river like pattern, which is the result of the better dispersion of the GnP in the epoxy matrix and thus shows improvement in flexural behaviour of such composite materials.

Keywords

Epoxy, Graphene nanoPlatelets (GnP), Surface Roughness, Water Absorption.
Subscription Login to verify subscription
User
Notifications
Font Size


  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896. PMid:15499015.
  • K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg et al. Solid State Communications, 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024.
  • A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan et al. Nano Letters, 8, 902 (2008). https://doi.org/10.1021/nl0731872. PMid:18284217.
  • Z.S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang and H.M. Cheng. ACS Nano, 3, 411 (2009). https://doi.org/10.1021/nn900020u.
  • C. Lee, X. Wei, J.W. Kysar and J. Hone. Science, 321, 385 (2008). https://doi.org/10.1126/science.1163196, PMid:18635798.
  • X. Du, I. Skachko, A. Barker and E.Y. Andrei. Nature Nanotechnology, 3, 491 (2008). https://doi.org/10.1038/nnano.2008.199. PMid:18685637.
  • J.R. Potts, D.R. Dreyer, C.W. Bielawski and R.S. Ruoff. Polymer, 52, 5 (2011). https://doi.org/10.1016/j.polymer. 2010.11.042.
  • P. Mukhopadhyay and R.K. Gupta. Plastics Engineering, 67, 32 (2011). https://doi.org/10.1002/j.1941-9635.2011.tb00669.x
  • J.A. King, D.R. Klimek, I. Miskioglu and G.M. Odegard. J. Appl. Poly. Sci., 128, 4217 (2013). https://doi.org/10.1002/app.38645.
  • S. Chatterjee, J.W. Wang, W.S. Kuo, N.H. Tai, C. Salzmann, W.L. Li, R. Hollertz, F.A. Nüesch and B.T.T. Chu. Chem. Phys. Letts., 531, 6 (2012). https://doi.org/10.1016/j.cplett.2012.02.006.
  • B. Soltannia and F. Taheri. Intern. J. Compo. Matter., 3, 181 (2013).
  • G. Hou, J. Gao, J. Xie and B. Li. Soft Materials, 14, 27 (2016). https://doi.org/10.1080/1539445X.2015.1098704.
  • H. Saleem, A. Edathil, T. Ncube, J. Pokhrel, S. Khoori, A. Abraham and V. Mittal. Macromolecular Mater. Engg., 301, 231 (2016). https://doi.org/10.1002/mame.201500335.
  • P. Zong, J. Fu, L. Chen, J. Yin, X. Dong, S. Yuan, L. Shi and W. Deng. RSC Advances, 6, 10498 (2016). https://doi.org/10.1039/C6RA14467E.
  • Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. Lv, X. Ran, Y. Pan and Z. Luo. Surface and Coatings Technology, 276, 471 (2015). https://doi.org/10.1016/j.surfcoat.2015.07.014, https://doi.org/10.1016/j.surfcoat.2015.06.027.
  • T. Liu, Z. Zhao, W.W. Tjiu, J. Lv and C. Wei. J. Appl. Poly. Sci., 131, (2014). https://doi.org/10.1002/app.40236.
  • K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura and S. Iijima. Science, 306, 1362 (2004). https://doi.org/10.1126/science.1104962. PMid:15550668.
  • M. Pinault, V. Pichot, H. Khodja, P. Launois, C. Reynaud and M. Mayne-L’Hermite. Nano Letters, 5, 2394 (2005). https://doi.org/10.1021/nl051472k. PMid:16351184.
  • A.K. Geim and K.S. Novoselov, In: Nanoscience and Technology: A Collection of Reviews from Nature Journals, 11 (2010). https://doi.org/10.1142/9789814287005_0002.
  • F. Hu, S. Chen, C. Wang, R. Yuan, D. Yuan and C. Wang. Analyticachimicaacta, 724, 40 (2012). https://doi.org/10.1016/j.aca.2012.02.037. PMid:22483207.
  • R. Moriche, S.G. Prolongo, M. Sánchez, A. Jiménez- Suárez, M.J. Sayagués and A. Ureña. Composites Part B: Engineering, 72, 199 (2015). https://doi.org/10.1016/j.compositesb.2014.12.012.
  • L.C. Tang, Y.J. Wan, D. Yan, Y.B. Pei, L. Zhao, Y.B. Li, L.B. Wu, J.X. Jiang and G.Q. Lai. Carbon, 60, 16 (2013). https://doi.org/10.1016/j.carbon.2013.03.050, https://doi.org/10.1016/j.carbon.2013.04.002.
  • M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu and N. Koratkar. ACS Nano, 3, 3884 (2009). https://doi. org/10.1021/nn9010472. PMid:19957928.
  • B. Ahmadi-Moghadam, M. Sharafimasooleh, S. Shadlou and F. Taheri. Materials & Design, 66, 142 (2015). https://doi.org/10.1016/j.matdes.2014.10.047.
  • H. Kulkarni, P. Tambe and G. Joshi. Fullerenes, Nanotubes and Carbon Nanostructures, 25, 241 (2017). https://doi.org/10.1080/1536383X.2017.1283616.
  • B. Singh and A. Mohanty. J. Surface Sci Technol., 35, 36 (2019).
  • M. George and A. Mohanty. J. Surface Sci Technol., 35, 45 (2019).
  • A. Kesavulu and A. Mohanty. J. Appl. Poly. Sci., 137, 49518 (2020). https://doi.org/10.1002/app.49518.
  • J. Wei, R. Atif, T. Vo and F. Inam. J. Nanomater., 2015. https://doi.org/10.1155/2015/561742.
  • A. Kesavulu and A. Mohanty. Mater. Res. Express., 6, 125329 (2019). https://doi.org/10.1088/2053-1591/ab58e3.
  • B. Singh and A. Mohanty. J. Surface Sci Technol., 36, 75 (2020).
  • S.G. Prolongo, R. Moriche, A. Jiménez-Suárez, M. Sánchez and A. Ureña. European Polymer Journal, 61, 206 (2014). https://doi.org/10.1016/j.eurpolymj.2014.09.022.
  • A. Mohanty and V.K. Srivastava. Materials & Design, 47, 711 (2013). https://doi.org/10.1016/j.matdes.2012.12.052.
  • M.R. Zakaria, M.H.A. Kudus, H.M. Akil and M.Z.M. Thirmizir. Composites Part B: Engineering, 119, 57 (2017). https://doi.org/10.1016/j.compositesb.2017.03.023.
  • R. Nadiv, M. Shtein, M. Buzaglo, S. Peretz-Damari, A. Kovalchuk, T. Wang, J.M. Tour and O. Regev. Carbon, 99, 444 (2016). https://doi.org/10.1016/j.carbon.2015.12.039.
  • F. Liu, X. Mo, H. Gan, T. Guo, X. Wang, B. Chen, J. Chen, S. Deng, N. Xu, T. Sekiguchi and D. Golberg. Scientific Reports, 4, 1 (2014). https://doi.org/10.1038/srep07041, https://doi.org/10.1038/srep05485. PMid:24975958 PMCid:PMC4074787.
  • D. Bazrgari, F. Moztarzadeh, A.A. Sabbagh-Alvani, M. Rasoulianboroujeni, M. Tahriri and L. Tayebi.Ceramics International, 44, 1220 (2018). https://doi.org/10.1016/j.ceramint.2017.10.068.
  • A. Kesavulu and A. Mohanty. Materials Research Express, 6, 125379 (2020). https://doi.org/10.1088/2053-1591/ab7de8.
  • H.Y. Marghalani. J. Appl. Oral Sci., 18, 59 (2010). https://doi.org/10.1590/S1678-77572010000100011. PMid:20379683 PMCid:PMC5349034.
  • S.G. Prolongo, R. Moriche, Jiménez- A. Suárez, M. Sánchez and A. Ureña. European Polymer Journal, 61, 206 (2014). https://doi.org/10.1016/j.eurpolymj.2014.09.022.

Abstract Views: 176

PDF Views: 0




  • Investigation of the Effect of Graphene Nanoplatelet content on Flexural Behavior, Surface Roughness and Water Absorption of a Graphene Nanoplatelets Reinforced Epoxy Nanocomposites

Abstract Views: 176  |  PDF Views: 0

Authors

A. Kesavulu
School of Mechanical Engineering, Vellore Institute of Technology, Vellore – 632014, Tamil Nadu, India
Akash Mohanty
School of Mechanical Engineering, Vellore Institute of Technology, Vellore – 632014, Tamil Nadu, India

Abstract


In the present work, the effect of Graphene nanoPlatelets (GnP) content on the flexural, surface roughness, and water absorption behavior of a GnP reinforced epoxy composite was investigated. Different wt.% of GnP (0.25, 0.5, 0.75, and 1 wt.%) was added into the epoxy matrix through the sonication method followed by the ball milling. The results indicate a significant enhancement in the flexural properties of the epoxy nanocomposite with the addition of GnP in the epoxy matrix. The optimum enhancement in the properties was obtained at 0.25 wt.% GnP incorporated epoxy composites. The increase in flexural strength and flexural modulus results were noticed as 42.7% and 49.2% when compared with neat epoxy. The surface roughness value for the loading of 0.25 wt.% of GnP into the epoxy showed a drop of 48.7% when compared with that of the neat epoxy sample. The loading of 0.25 wt.% of GnP into the epoxy also reduces the water absorption from 0.125% for the neat epoxy sample to 0.067% for the composite sample. The Scanning Electron Microscope (SEM) images of the fractured surface (flexural samples) of the GnP embedded epoxy composites show the river like pattern, which is the result of the better dispersion of the GnP in the epoxy matrix and thus shows improvement in flexural behaviour of such composite materials.

Keywords


Epoxy, Graphene nanoPlatelets (GnP), Surface Roughness, Water Absorption.

References