Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Dye Adsorption Kinetics and Isotherm Study Using Surfactant-Modified Biomass : Influence of pH Substantiated with Quantum Chemical Validation


Affiliations
1 Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat – 395007, Gujarat, India
2 Department of Zoology, B. P. Baria Science Institute, Navsari – 396445, Gujaratin
3 Department of Applied Science, Faculty of Electrical and Mechanical Engineering, College of Military Engineering, Pune – 411031, Maharashtra, India
4 Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat – 395007, Gujarat, India
     

   Subscribe/Renew Journal


The current study offers a comprehensive understanding on the adsorption study employing the cost-effective biomass as an effective substitute against high-cost treatment options. The present work put forth the adsorption of hazardous cationic dye: Crystal Violet (CV) from aqueous solution using Rice Husk (RH) and surfactant Modified Rice Husk (MRH). Effect of the adsorbents: RH and MRH onto CV removal is determined considering various experimental parameters viz., mass, volume, dye concentration, contact-time, equilibrium temperature, and pH where maximum CV adsorption was achieved at pH = 8. Results obtained are attributed to the favorable ion-pair formation between CV and anionic surfactant: Sodium Dodecyl Sulfate (SDS) which is validated further using quantum chemical calculations. To counterpart the sorption process onto the adsorbent, the adsorption study was validated employing several kinetic models and isotherms. The thermodynamic conduct concluded the CV adsorption to be spontaneous (negative ΔG) and endothermic (positive ΔH) in characteristic at ambient temperature i.e., adsorption increases with temperature.

Keywords

Computational Simulation, Dye, Isotherm, Kinetics, Surfactant, Thermodynamics.
Subscription Login to verify subscription
User
Notifications
Font Size


  • K. S. Bharathi, S. T. Ramesh, Appl. Water Sci., 3, 773, (2013). https://doi.org/10.1007/s13201-013-0117-y.
  • G. Crini, Bioresour. Technol., 97, 1061, (2006). https://doi.org/10.1016/j.biortech.2005.05.001. PMid:15993052.
  • I. Tan, A. Ahmad, B. Hameed, J. Hazard. Mater., 154, 337, (2008). https://doi.org/10.1016/j.jhazmat.2007.10.031. PMid:18035483.
  • V. K. Gupta, Suhas, J. Environ. Manag., 90, 2313, (2009). https://doi.org/10.1016/j.jenvman.2008.11.017. PMid:19264388.
  • S. Ong, C. Lee, Z. Zainal, Bioresour. Technol., 98, 2792, (2007). https://doi.org/10.1016/j.biortech.2006.05.011. PMid:17400446.
  • M. Cai, J. Su, Y. Zhu, X. Wei, M. Jin, H. Zhang, C. Dong, Z. Wei, Ultrason. Sonochem., 28, 302, (2016). https://doi.org/10.1016/j.ultsonch.2015.08.001. PMid:26384912.
  • A. S. Bhatt, P. L. Sakaria, M. Vasudevan, R. P. Pawar, N. Sudheesh, H. C. Bajaj, H. Mody, RSC Adv., 2, 8663, (2012). https://doi.org/10.1039/c2ra20347b.
  • H. Chen, J. Zhao, Adsorption, 15, 381, (2009). https://doi.org/10.1007/s10450-009-9155-z.
  • J. Huang, Y. Liu, Q. Jin, X. Wang, J. Yang, J. Hazard. Mater., 143, 541, (2007). https://doi.org/10.1016/j.jhazmat.2006.09.088. PMid:17097224.
  • M. Baghdadi, A. Jafari, A. Pardakhti, RSC Adv., 6, 61423, (2016). https://doi.org/10.1039/C6RA08901A.
  • M. Koch, A. Yediler, D. Lienert, G. Insel, A. Kettrup, Chemosphere, 46, 109, (2002). https://doi.org/10.1016/ S0045-6535(01)00102-3.
  • X. Zhang, W. Dong, W. Yang, Chem. Eng. Technol., 233, 14, (2013).
  • M. Dogan, M. Alkan, A. Turkyilmaz, Y. Ozdemir, J. Hazard. Mater., 109, 141, (2004).
  • M. K. Sahu, R. K. Patel, RSC Adv., 5, 78491, (2015). https://doi.org/10.1039/C5RA15780C.
  • M. Sarkar, P. Acharya, B. Bhattacharya, J. Colloid Interface Sci., 266, 28, (2003). https://doi.org/10.1016/S0021-9797(03)00551-4.
  • V. Gupta, B. Gupta, A. Rastogi, S. Agarwal, A. Nayak, J. Hazard. Mater., 186, 891, (2011). https://doi.org/10.1016/j.jhazmat.2010.11.091. PMid:21163571.
  • A. Ozcan, C. Omeroglu, Y. Erdogan, A.S. Ozcan, J. Hazard. Mater., 140, 173, (2007).
  • A. Ozcan, A.S., J. Hazard. Mater., 125, 252, (2007).
  • P. Baskaralingam, M. Pulikesi, V. Ramamurthi, S. Sivanesan, Appl. Clay Sci., 37, 207, (2007). https://doi.org/10.1016/j.clay.2007.01.014.
  • Z. Bouberka, A. Khenifi, F. Sekrane, N. Bettahar, Z. Derriche, Chem. Eng. J., 136, 295, (2008).
  • O. Maria, C. Pacurariua, S. Gabriela, RSC Adv., 4, 62621, (2014). https://doi.org/10.1039/C4RA10504D.
  • S. Bajpai, A. Jain, Water, 4, 52, (2012). https://doi.org/10.1111/j.1537-2995.2011.03449.x. PMid:22571360.
  • S. Chakraborty, S. Chowdhury, P. Saha, Carbohydr. Polym., 86, 1533, (2011). https://doi.org/10.1016/j.carbpol. 2011.06.058.
  • B. Inbaraj, K. Selvarani, N. Sulochana, J. Scient. Ind. Res., 61, 971, (2002).
  • V. Vadivelan, K. V. Kumar, J. Colloid Interface Sci., 286, 90, (2005). https://doi.org/10.1016/j.jcis.2005.01.007. PMid:15848406.
  • I. Mall, S. Upadhyay, Indian J. Environ. Health, 40, 177, (1998).
  • Y. Ho, Water Resour., 37, 2323, (2003). https://doi.org/10.1016/S0043-1354(03)00002-2.
  • R. Sivaraj, C. Namasivayam, K. Kadirvelu, Waste Manage., 21, 105, (2001). https://doi.org/10.1016/S0956- 053X(00)00076-3.
  • Q. Sun, L. Yang, Water Resour., 37, 1535, (2003). https://doi.org/10.1016/S0043-1354(02)00520-1.
  • S. Olivera, H. B. Muralidhara, K. Venkatesh, V. K. Guna, K. Gopalakrishna, K. Y. Kumar, Carbohydr. Polym., 153, 600, (2016). https://doi.org/10.1016/j.carbpol.2016.08.017. PMid:27561533.
  • A. Kausar, K. Naeem, M. Iqbal, Z.-I.-H. Nazli, H. N. Bhatti, A. Ashraf, A. Nazir, H. S. Kusuma, M. I. Khan, : A review. Z. Phys. Chem. (2021).
  • T. Vieira, S. E. S. Artifon, C. T. Cesco, P. B. Vilela, V. A. Becegato, A. T. Paulino, Colloid Polym. Sci., 299, 649, (2021). https://doi.org/10.1007/s00396-020-04786-2.
  • B. Simoncic, M. Kert., Dyes Pigm., 54, 221, (2002). https://doi.org/10.1016/S0143-7208(02)00046-3.
  • J. Yang, J. Colloid Interface Sci., 274, 237, (2004). https://doi.org/10.1016/j.jcis.2004.03.028. PMid:15120298.
  • C. Kartal, H. Akbas, Dyes Pigm., 65, 191, (2005). https://doi.org/10.1016/j.dyepig.2004.07.003.
  • A. R. Cestari, E. F. S. Vieira, G. S. Vieira, L. E. Almeida, J. Hazard. Mater., B138, 133, (2006). https://doi. org/10.1016/j.jhazmat.2006.05.046. PMid:16797835.
  • M. Bielska, A. Sobczynska, K. Prochaska, Dyes Pigm., 80, 201, (2009). https://doi.org/10.1016/j.dyepig.2008.05.009.
  • B. Gohain, S. Sarma, R. K. Dutta, J. Mol. Liq., 142, 130, (2008). https://doi.org/10.1016/j.molliq.2008.05.015.
  • J. Ma, B. Cui, J. Dai, D. Li, J. Hazard. Mater., 186, 1758, (2011). https://doi.org/10.1016/j.jhazmat.2010.12.073. PMid:21227582.
  • B. Zhao, W. Xiao, Y. Shang, H. Zhu, R. Han, Arab. J. Chem., 10, S3595, (2017). https://doi.org/10.1016/j. arabjc.2014.03.010.
  • K. Kuperkar, L. Abezgauz, D. Danino, G. Verma, P. Hassan, V. Aswal, D. Varade, P. Bahadur, J. Colloid Interface Sci., 323, 403, (2008). https://doi.org/10.1016/j.jcis.2008.04.040. PMid:18486141.
  • L. Abezgauz, K. Kuperkar, P. Hassan, O. Ramon, P. Bahadur, D. Danino, J. Colloid Interface Sci., 342, 83, (2010). https://doi.org/10.1016/j.jcis.2009.08.045. PMid:19939405.
  • J. Eastoe, R. F., D. Berti, G. Palazzo, Eds. Elsevier, Amsterdam, 135, (2014).
  • Crops/Regions/World list/Production Quantity (pick lists), Rice (paddy), 2018. UN Food and Agriculture Organization, Corporate Statistical Database (FAOSTAT). 2020.
  • D. Patel, S. Rathod, S. Tiwari, D. Ray, K. Kuperkar, V. Aswal, P. Bahadur, J. Phys. Chem. B, 124, 11750, (2020). https://doi.org/10.1021/acs.jpcb.0c09386. PMid:33305575.
  • D. Patel, D. Ray, K. Kuperkar, H. Pal, V. Aswal, P. Bahadur, Polym. Int., 69, 1097, (2020). https://doi.org/10.1002/ pi.5962,
  • D. Patel, D. Ray, K. Kuperkar, V. Aswal, P. Bahadur, J. Mol. Liq., 316, 113897, (2020). https://doi.org/10.1016/j.molliq. 2020.113897.

Abstract Views: 214

PDF Views: 0




  • Dye Adsorption Kinetics and Isotherm Study Using Surfactant-Modified Biomass : Influence of pH Substantiated with Quantum Chemical Validation

Abstract Views: 214  |  PDF Views: 0

Authors

Bharatkumar Kanoje
Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat – 395007, Gujarat, India
Unnati Dani
Department of Zoology, B. P. Baria Science Institute, Navsari – 396445, Gujaratin
Manjusha Shirdhonkar
Department of Applied Science, Faculty of Electrical and Mechanical Engineering, College of Military Engineering, Pune – 411031, Maharashtra, India
Jigisha Parikh
Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat – 395007, Gujarat, India
Ketan Kuperkar
Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat – 395007, Gujarat, India

Abstract


The current study offers a comprehensive understanding on the adsorption study employing the cost-effective biomass as an effective substitute against high-cost treatment options. The present work put forth the adsorption of hazardous cationic dye: Crystal Violet (CV) from aqueous solution using Rice Husk (RH) and surfactant Modified Rice Husk (MRH). Effect of the adsorbents: RH and MRH onto CV removal is determined considering various experimental parameters viz., mass, volume, dye concentration, contact-time, equilibrium temperature, and pH where maximum CV adsorption was achieved at pH = 8. Results obtained are attributed to the favorable ion-pair formation between CV and anionic surfactant: Sodium Dodecyl Sulfate (SDS) which is validated further using quantum chemical calculations. To counterpart the sorption process onto the adsorbent, the adsorption study was validated employing several kinetic models and isotherms. The thermodynamic conduct concluded the CV adsorption to be spontaneous (negative ΔG) and endothermic (positive ΔH) in characteristic at ambient temperature i.e., adsorption increases with temperature.

Keywords


Computational Simulation, Dye, Isotherm, Kinetics, Surfactant, Thermodynamics.

References