Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Acid Modified Graphene Oxide from used Battery Rods Loaded with 2-{(E)-[(3-hydroxyphenyl) imino] methyl} Phenol : Electrochemical Detection of Dopamine in Presence of Ascorbic Acid and Uric Acid in Aqueous Medium


Affiliations
1 Department of Chemistry, Gauhati University, Guwahati – 781014, Assam, India
     

   Subscribe/Renew Journal


The graphite rods of used batteries have been utilized as source for Graphene Oxide (GO). The Acid Modified Graphene Oxide (AMGO) is loaded with Schiff base obtained from salicylaldehyde and 3-amino phenol. Glassy Carbon Electrode (GCE) surface when modified with the Schiff base loaded AMGO acts as electrochemical sensor for Dopamine (DA) in presence of Uric Acid (UA) and Ascorbic Acid (AA). Cyclic Voltammetry (CV), Square Wave Voltammetry (SWV) and Differential Pulse Voltammetry (DPV) shows well separated peaks for DA from UA and AA. The DA peak intensity increases in the three techniques with DA concentration. The linear range for the detection of dopamine is observed from 9.09 × 10-4 M to 1.70 × 10-3 M in presence of 1.00 × 10-1 M Ascorbic Acid and 1.00 × 10-2 M uric acid. The detection limit is estimated to be 9.38 × 10-10 M.

Keywords

Dopamine, Graphene Oxide, Sensor, Voltammetry.
Subscription Login to verify subscription
User
Notifications
Font Size


  • N. Tukimin, J. Abdullah, Y. Sulaiman, J. Electrochem. Soc., 165, B258 (2018). https://doi.org/10.1149/2.0201807jes.
  • Y. H. Chang, P. M. Woi, Y. B. Alias, Microchem. J., 148, 322 (2019). https://doi.org/10.1016/j.microc.2019.04.081.
  • X. Chen, D. Li, W. Ma, T. Yang, Y. Zhang, D. Zhang, Microchim Acta (2019). https://doi.org/10.1007/s00604- 019-3518-2. PMid:31183562.
  • H. Huang, Y. Yue, Z. Chen, Y. Chen, S. Wu, J. Liao, S. Liu, H. Wen, Microchim Acta (2019). https://doi.org/10.1007/ s00604-019-3299-7. PMid:30771002.
  • B. N. Chandrashekar, W. Lv, G. K. Jayaprakash, K. Harrath, L. W. Y. Liu, B. E. K. Swamy, Chemosensors (2019). https://doi.org/10.3390/chemosensors7020024.
  • D. L. Huang, J. Wang, H. Q. Yuan, H. S. Guo, X. Ying, H. Zhang, H. Y. Liu, J. Porphyr. Phthalocyanines, 22, 1 (2018). https://doi.org/10.1142/S1088424618500761.
  • O. E. Fayemi, A. S. Adekunle, B. E. K. Swamy, E. E. Ebenso, J. Electroanal. Chem., 818, 236 (2018). https://doi.org/10.1016/j.jelechem.2018.02.027.
  • S. I. Kaya, S. Kurbanoglu, S. A. Ozkan, Crit. Rev. Anal. Chem., 49, 101 (2018). https://doi.org/10.1080/10408347.2018.1489217. PMid:30574792.
  • J. L. Berfield, L. C. Wang, M. E. A. Reith, J. Biol. Chem., 274, 4876 (1999). https://doi.org/10.1074/jbc.274.8.4876. PMid:9988729.
  • C. Gong, W. Wang, K. Bowen, X. Zhang, J. Phys. Chem., 123, 7695 (2019). https://doi.org/10.1021/acs.jpcb.9b06223. PMid:31429554.
  • M. Asif, A. Aziz, H. Wang, Z. Wang, W. Wang, M. Ajmal, F. Xiao, X. Chen, H. Liu, Microchim Acta, 186, 61 (2019). https://doi.org/10.1007/s00604-018-3158-y. PMid:30627779.
  • H. R. Zare-Mehrjardi, Anal. Bioanal. Electrochem., 10, 52 (2018).
  • V. M. A. Mohanan, A. K. Kunnummal, V. M. N. Biju, J. Mater. Sci., 53, 10627 (2018). https://doi.org/10.1007/s10853-018-2355-8.
  • J. Pereyra, M. V. Martinez, C. Barbero, M. Bruno, D. Acevedo, J. Compos. Sci. (2019). https://doi.org/10.3390/jcs3010001.
  • C. Rajkumar, B. Thirumalraj, S. M. Chen, H. A. Chen, J. Colloid Interface Sci., 487, 149 (2017). https://doi.org/10.1016/j.jcis.2016.10.024. PMid:27768998.
  • R. A. de Toledo, M. C. Santos, E. T. G. Cavalheiro, L. H. Mazo, Anal. Bioanal. Chem., 381, 1161 (2005). https://doi.org/10.1007/s00216-005-3066-y. PMid:15714300.
  • A. Saini, A. Kumar, V. K. Anand, S. C. Sood, Int. J. Eng. Trends Technol., 40, 67 (2016). https://doi.org/10.14445/22315381/IJETT-V40P211.
  • M. S. Mukhtar, N. Y. Pindiga, B. Magaji, J. O. Nnamani, M. M. Saddam, JMSRR, 5, 26 (2020).
  • L. Ma, Q. Zhang, C. Wu, Y. Zhan, L. Zeng, Anal. Chim. Acta, 1055, 17 (2019) https://doi.org/10.1016/j.aca.2018.12.025. PMid:30782366.
  • J. Rajbongshi, D. K. Das, S. Mazumdar, Electrochim. Acta, 55, 4174 (2010). https://doi.org/10.1016/j.electacta. 2010.02.045.
  • A. S. Lamari, A. Fattouh, S. E. Qouatli, R. Najih, A. Chtaini, Acta Tech Corvin., Bull. Eng., 11, 39 (2013).
  • T. Thomas, R. J. Mascarenhas, C. Nethravathi, M. Rajamathi, B. E. K. Swamy, J. Electroanal. Chem., 659, 113 (2011). https://doi.org/10.1016/j.jelechem.2011.05.011.
  • M. Mallesha, R. Manjunatha, C. Nethravathi, G. S. Suresh, M. Rajamathi, J. S. Melo, T. V. Venkatesha, Bioelectrochem, 81, 104 (2011). https://doi.org/10.1016/j.bioelechem.2011.03.004. PMid:21497563.
  • X. Ma, M. Chao, Z. Wang, Anal. Methods, 4, 1687 (2012). https://doi.org/10.1039/c2ay25040c.
  • H. Wang, F. Ren, C. Wang, B. Yang, D. Bin, K. Zhang, Y. Du, RSC Adv., 4, 26895 (2014). https://doi.org/10.1039/c4ra03148b.
  • M. Wang, M. Cui, W. Liu, X. Liu, J. Electroanal. Chem., 832, 174 (2019). https://doi.org/10.1016/j.jelechem.2018.10.057.
  • H. Yang, J. Zhao, M. Qiu, P. Sun, D. Han, L. Niu, G. Cu, Biosens. Bioelectron., 191, 124, (2019). https://doi.org/10.1016/j.bios.2018.10.012. PMid:30388561.

Abstract Views: 192

PDF Views: 0




  • Acid Modified Graphene Oxide from used Battery Rods Loaded with 2-{(E)-[(3-hydroxyphenyl) imino] methyl} Phenol : Electrochemical Detection of Dopamine in Presence of Ascorbic Acid and Uric Acid in Aqueous Medium

Abstract Views: 192  |  PDF Views: 0

Authors

Diganta Kumar Das
Department of Chemistry, Gauhati University, Guwahati – 781014, Assam, India
Priyakshi Bordoloi
Department of Chemistry, Gauhati University, Guwahati – 781014, Assam, India

Abstract


The graphite rods of used batteries have been utilized as source for Graphene Oxide (GO). The Acid Modified Graphene Oxide (AMGO) is loaded with Schiff base obtained from salicylaldehyde and 3-amino phenol. Glassy Carbon Electrode (GCE) surface when modified with the Schiff base loaded AMGO acts as electrochemical sensor for Dopamine (DA) in presence of Uric Acid (UA) and Ascorbic Acid (AA). Cyclic Voltammetry (CV), Square Wave Voltammetry (SWV) and Differential Pulse Voltammetry (DPV) shows well separated peaks for DA from UA and AA. The DA peak intensity increases in the three techniques with DA concentration. The linear range for the detection of dopamine is observed from 9.09 × 10-4 M to 1.70 × 10-3 M in presence of 1.00 × 10-1 M Ascorbic Acid and 1.00 × 10-2 M uric acid. The detection limit is estimated to be 9.38 × 10-10 M.

Keywords


Dopamine, Graphene Oxide, Sensor, Voltammetry.

References