Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Dielectric Relaxation Studies on the Hydration Dynamics of Ionic, Non-Ionic and Zwitterionic Surfactants in Aqueous Acetate Buffer Solution


Affiliations
1 Department of Physics, Sathyabama Institute of Science and Technology, Chennai – 600119, Tamil Nadu, India
     

   Subscribe/Renew Journal


Dielectric relaxation studies of acetate buffer solutions of Sodium Dodecyl Sulphate (SDS- anionic), Cetyl Trimethyl Ammonium Bromide (CTAB- cationic), Tween 80 (TW-80-non-ionic), Betaine Anhydrous (BA- zwitterionic) surfactants have been examined in the frequency region between 1GHz and 25GHz for various concentrations of surfactants at the temperatures of 283, 288, 293 and 298K using time domain dielectric spectroscopy. The obtained corrected loss spectra of all the amphiphiles except betaine anhydrous in acetate buffer solution depicted peaks near 1-2GHz and 15GHz, respectively. For betaine anhydrous, expected peak was not observed in the 1-2GHz frequency region. The peak ascertained near 15GHz, and another peak about 1-2GHz was accorded to free water relaxation and bound water reorientation of the surfactant micelles, and has acquired the reliance of temperature with concentration in detail. Single Debye and Cole-Cole function was employed to compute the relaxation times of free water and bound water, respectively. The Arrhenius plot was used to calculate the enthalpy and entropy for the micelle forming surfactants.

Keywords

Cole-Cole Plot, Complex Permittivity, Dielectric Relaxation, Hydration, Micelles, Surfactants, Time Domain Reflectometry, Thermodynamic Parameters.
Subscription Login to verify subscription
User
Notifications
Font Size


  • L. John Finney. Faraday Discuss., 103, 1 (1996). https://doi.org/10.1039/fd9960300001. PMid:9136634.
  • N. Nandi, K. Bhattacharyya and B. Bagchi. Chem. Rev., 100, 2013 (2000). https://doi.org/10.1021/cr980127v. PMid:11749282.
  • D.O. Shah, M.-E. Micelles, Monolayers. Science and Technology: Marcel Dekker, New York/Basel/Hong Kong (1998).
  • W.M. Gelbart, A. Ben-Shaul, D. Roux. Micelles, Membranes, Micro-emulsions, and Monolayers: Springer-Verlag, New York (1994). https://doi.org/10.1007/978-1-4613-8389-5.
  • D. Fennell Evans, H. Wennestrom. The Colloidal Domain where Physics, Chemistry, Biology, and Technology Meet: VHC Publishers, New York/Weinheim/Cambridge (1994).
  • C. Baar, R. Buchner, W. Kunz. J. Phys. Chem. B, 105, 2906 (2001). https://doi.org/10.1021/jp002884e, https://doi. org/10.1021/jp004450p.
  • C. Baar, R. Buchner, W. Kunz. J. Phys. Chem. B, 105, 2914 (2001). https://doi.org/10.1021/jp002884e, https://doi. org/10.1021/jp004450p.
  • T. Shikata, S. Imai. Langmuir, 14, 6804 (1998). https://doi.org/10.1021/la980421i.
  • S. Imai, M. Shiokawa, T. Shikata. J. Phys. Chem. B, 105, 4495 (2001). https://doi.org/10.1021/jp0038409, https://doi.org/10.1021/jp002348m.
  • S. Itani, T. Shikata. Langmuir, 17, 6841 (2001). https://doi.org/10.1021/la010551i.
  • P. Fernandez, S. Schrödle, R. Buchner, W. Kunz. Phys Chem Chem Phys., 4, 1065 (2003). https://doi.org/10.1002/cphc.200300725. PMid:14596003.
  • F.S. Lima, H. Chaimovich, I.M. Cuccovia, R. Buchner. Langmuir, 29, 10037 (2013). https://doi.org/10.1021/la401728g. PMid:23899188.
  • T. Tadros. (2013) Surfactant Molecule. In: Tadros T. (eds) Encyclopaedia of Colloid and Interface Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20665-8.
  • A. Ruth. Y.N. Livingstone, Mischa Bonn, H.G.B. Ellen. J. Am. Chem. Soc., 137, 14912 (2015). https://doi.org/10.1021/jacs.5b07845. PMid:26544087.
  • D.E. Gragson, B.M. McCarty, G.L. Richmond. J. Am. Chem. Soc., 119, (1997) 6144. https://doi.org/10.1021/ja962277y.
  • X.K. Chen, W. Hua, Z.S. Huang, H.C. Allen. J. Am. Chem. Soc., 132, 11336 (2010). https://doi.org/10.1021/ja1048237. PMid:20698700.
  • C.E. Shannon. Proc. IRE, 37, 10 (1949). https://doi.org/10.1109/JRPROC.1949.232969.
  • H.A. Samulon. Proc. IRE, 39, 175 (1951). https://doi.org/10.1109/JRPROC.1951.231438.
  • R.H. Cole, J.G. Berberian, S. Mashimo, G. Chryssikos, A. Burns, E. Tombari. J. Appl. Phys., 66, 793 (1989). https://doi.org/10.1063/1.343499.
  • A.C. Kumbharkhane, S.M. Puranik, S.C. Mehrotra. J. Chem. Soc. Faraday Trans., 87, 1569 (1991). https://doi.org/10.1039/FT9918701569.
  • D.V. Jahagirdar, B.R. Arbad, M.P. Lokhande, S.C. Mehrotra. Indian J. Chem.A, 34, 462 (1995).
  • M. Bester-Rogac, A. Stoppa, J. Hunger, G. Hefter, R. Buchner. Phys. Chem. Chem. Phys., 13, 17588 (2011). https://doi.org/10.1039/c1cp21371g. PMid:21892477.
  • W. Wachter, G. Trimmel, R. Buchner, O. Glatter. Soft Matter, 7, 1409 (2011). https://doi.org/10.1039/C0SM00681E
  • R. Buchner, G. Hefter. Phys. Chem. Chem. Phys., 11, 8984 (2009). https://doi.org/10.1039/b906555p. PMid:19812816.
  • M. Luksic, R. Buchner, B. Hribarlee, V. Vlachy. Macromolecules, 42, 4337 (2009). https://doi.org/10.1021/ma900097c.
  • R. Buchner. Pure Appl. Chem., 80, 1239 (2008). https://doi.org/10.1351/pac200880061239.
  • P. Debye. Polar Molecules, Dover Publications Inc. New York (1929).
  • N. Shinyashiki, W. Yamamoto, W. Yokoyama, T. Yoshinari, S. Yagihara, R. Kita, K.L. Ngai, S. Capaccioli. J. Phys. Chem. B. 113, 14448 (2009). https://doi.org/10.1021/jp905511w. PMid:19799444.
  • S. Khodadadi, S. Pawlus, A.P. Sokolov. J. Phys. Chem. B. 112, 14273 (2008). https://doi.org/10.1021/jp8059807. PMid:18942780.
  • K.S. Cole, R.H. Cole. J. Chem. Phys. 9, 341 (1941). https://doi.org/10.1063/1.1750906.
  • D. Gopalakrishnan, A.C. Kumbharkhane, R. Sampathkumar. Macromol. Symp., 376, 1700003 (2017). https://doi.org/10.1002/masy.201700003.
  • A. Knocks, H. Weingartner. J. Phys. Chem. B, 105, 3635 (2001). https://doi.org/10.1021/jp003700z.
  • A. Oleinikova, P. Sasisanker, H. Weingaertner. J. Phys. Chem. B, 108, 8467 (2004). https://doi.org/10.1021/jp047953u, https://doi.org/10.1021/jp049618b.
  • M. Wolf, R. Gulich, P. Lunkenheimer, A. Loidl. Biochim Biophys Acta Proteins Proteom, 1824, 723 (2012). https://doi.org/10.1016/j.bbapap.2012.02.008. PMid:22406314.
  • J.P. Perl, H.E. Bussey, D.T. Wasan. J. Colloid Interface Sci., 108, 528 (1985). https://doi.org/10.1016/0021-9797(85)90292-9.
  • D. Gopalakrishnan, R. Sampathkumar. IJPAP, 56, 315 (2018).
  • R. Sampathkumar, D. Gopalakrishnan, A.C. Kumbharkhane. Int. J. Biol. Macromol., 118, 1811 (2018). https://doi.org/10.1016/j.ijbiomac.2018.07.020. PMid:30006009.
  • D. Stigter. J. Phys. Chem. A, 68, 3603 (1964). https://doi.org/10.1021/j100794a028.
  • U. Kaatze, C.H. Limberg, R. Pottel. Ber. Bunsenges. Phys. Chem., 78, 555 (1974).
  • L. Lanzi, M. Carlà, C.M.C. Gambi. J. Colloid Interface Sci., 330, 156 (2009). https://doi.org/10.1016/j.jcis.2008.10.039. PMid:19004453.
  • R. Buchner, C. Baar, C. Fernandez, S. Schrfdle, W. Kunz. J. Mol. Liq., 118, 179 (2005). https://doi.org/10.1016/j.molliq.2004.07.035.
  • A. Amani, P. York, Hans de Waard, J. Anwar. Soft Matter, 7, 2900 (2011). https://doi.org/10.1039/c0sm00965b.
  • Toshiyuki Shikata, Rintaro Takahashi, Aiko Sakamoto, J. Phys. Chem. B, 110, 8941 (2006). https://doi.org/10.1021/jp060356i. PMid:16671699.
  • Yousuke Ono, Toshiyuki Shikata, J. Phys. Chem. B, 109, 7412 (2005). https://doi.org/10.1021/jp044237j. PMid:16851849.
  • B. Bagchi. Chem. Rev., 105, 3179 (2005). https://doi.org/10.1021/cr020661+. PMid:16159150.
  • S. Glasstone, K.J. Laidler, H. Eyring. Theory of Rate Processes. McGraw Hill, New York (1941).
  • C. Rose, A.B. Mandal. Int. J. Biol. Macromol., 18, 41 (1996). https://doi.org/10.1016/0141-8130(95)01054-8.

Abstract Views: 249

PDF Views: 2




  • Dielectric Relaxation Studies on the Hydration Dynamics of Ionic, Non-Ionic and Zwitterionic Surfactants in Aqueous Acetate Buffer Solution

Abstract Views: 249  |  PDF Views: 2

Authors

R. Sampathkumar
Department of Physics, Sathyabama Institute of Science and Technology, Chennai – 600119, Tamil Nadu, India
V. Balachandar
Department of Physics, Sathyabama Institute of Science and Technology, Chennai – 600119, Tamil Nadu, India
D. Gopalakrishnan
Department of Physics, Sathyabama Institute of Science and Technology, Chennai – 600119, Tamil Nadu, India

Abstract


Dielectric relaxation studies of acetate buffer solutions of Sodium Dodecyl Sulphate (SDS- anionic), Cetyl Trimethyl Ammonium Bromide (CTAB- cationic), Tween 80 (TW-80-non-ionic), Betaine Anhydrous (BA- zwitterionic) surfactants have been examined in the frequency region between 1GHz and 25GHz for various concentrations of surfactants at the temperatures of 283, 288, 293 and 298K using time domain dielectric spectroscopy. The obtained corrected loss spectra of all the amphiphiles except betaine anhydrous in acetate buffer solution depicted peaks near 1-2GHz and 15GHz, respectively. For betaine anhydrous, expected peak was not observed in the 1-2GHz frequency region. The peak ascertained near 15GHz, and another peak about 1-2GHz was accorded to free water relaxation and bound water reorientation of the surfactant micelles, and has acquired the reliance of temperature with concentration in detail. Single Debye and Cole-Cole function was employed to compute the relaxation times of free water and bound water, respectively. The Arrhenius plot was used to calculate the enthalpy and entropy for the micelle forming surfactants.

Keywords


Cole-Cole Plot, Complex Permittivity, Dielectric Relaxation, Hydration, Micelles, Surfactants, Time Domain Reflectometry, Thermodynamic Parameters.

References