Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Characterization of DNA-Protein Complex Ionogels Using Small Angle Neutron Scattering, Differential Scanning Calorimetry and Rheology


Affiliations
1 Special Centre for Nano Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
     

   Subscribe/Renew Journal


We have studied the structural and thermo-mechanical properties of DNA-protein (gelatin A, GA) complex gels formed in imidazolium based ionic liquid solutions called ionogels generated has a result of first order phase transition from a complex coacervate. We probed the microscopic structure of these ionogels using Small Angle Neutron Scattering (SANS), differential scanning calorimetry (DSC) and rheological measurements. Data show that around 0.1% (w/v) GA concentration stiffening of DNA-GA complex takes place (optimum binding concentration). At higher temperature, the GA-DNA binding weakens and GA-GA interaction facilitates the reorganization of the material which on heating turns into ionosols. Ionosols when cooled to room temperature formed ionogels. The typical size of the complexes is a 150 nm (radius of gyration, Rg). SANS experiments indicate a mesh size, ξ≈3.8 ± 0.2 nm to these gels independent of protein concentration CGA. Viscoelastic studies reveal that the storage and loss moduli (G' and G") values that are comparable, and the viscoelastic length ξel is typically double the mesh size of the network. It is found that these ionogels were associated with higher gel strength, and specific heat at optimum binding conditions. It is concluded that the DNA-gelatin complex ionogels comprise a unique class of designer soft material stable with respect to protein concentration change, higher gel strength and melting temperature compared to conventional gelatin gels.

Keywords

DNA, Gelatin, Ionogels, SANS, Rheology, Specific Heat.
Subscription Login to verify subscription
User
Notifications
Font Size


  • S. S. Jena and H. B. Bohidar, J. Chem. Phys., 100, 6888-6895 (1994).
  • S. S. Jena and H. B. Bohidar, J. Chem. Phys., 98, 8970-8977 (1993).
  • I. Pezron, M. Djabourov and J. Leblond, Polymer, 32, 3201-3209 (1991).
  • M. Djabourov, J. Leblond and P. Papon, J. Phys., 49, 319-332 (1988).
  • M. Djabourov, J. Leblond and P. Papon, J. Phys., 49, 333-343 (1988).
  • L. Guo, R. H. Colby, C. P. Lusignan and T. H. Whitesides, Macromolecules, 36, 9999-10008 (2003).
  • S. Boral and H. B. Bohidar, J. Phys. Chem. B., 116, 7113-7121 (2012).
  • S. Sanwlani, P. Kumar and H. B. Bohidar, J. Phys. Chem. B., 115, 7332-7340 (2011).
  • K. Rawat, J. Pathak and H. B. Bohidar, Soft Matter, 10, 862-872 (2014).
  • A. B. Kayitmazer, H. B. Bohidar, K. W. Mattison, A. Bose, J. Sarkar, A. Hashidzume, P. S. Russo, W. Jaeger and P. L. Dubin, Soft Matter, 3, 1064-1076 (2007).
  • Y. Yan, E. Kizilay, D. Seeman, S. Flanagan, P. L. Dubin, L. Bovetto, L. Donato, and C. Schmitt, Langmuir, 29 (50), 15614-15623 (2013).
  • E. Kizilay, S. Maccarrone, E. Foun, A. D. Dinsmore, and P. L. Dubin, J. Phys. Chem. B., 115 (22), 7256-7263 (2011).
  • A. Kamra, K. Sachin, A. Saxena and H. B. Bohidar, Curr. Pharm. Biotech., 6 121-130 (2005).
  • B. Mohanty and H. B. Bohidar, Biomacromolecules, 4, 1080-1086 (2003).
  • J. Pathak, K. Rawat and H. B. Bohidar, Int. J. Biol. Macromols., 63, 29-37 (2014).
  • A. Veis, The macromolecular chemistry of gelatin, Academic Press, New York, 1964.
  • A. Tiwari, Sonal Bindal and H. B. Bohidar, Biomacromolecules, 10, 184-189 (2009).
  • N. Arfin and H. B. Bohidar, J. Phys. Chem. B., 116, 13192-131-99 (2012).
  • M. A. B. H. Susan, T. Kaneko, A. Noda and M. Watanabe, J. Am. Chem. Soc., 127, 4976-4983 (2005).
  • N. Winterton, J. Mater. Chem., 16, 4281-4293 (2006).
  • J. L. Bideau, L. Viaub and A. Vioux, Chem. Soc. Rev., 40, 907-925 (2011).
  • Y. Hea and T. P. A. Lodge, Chem. Commun., 2732-2734 (2007).
  • Y. Lei and T. P. Lodge, Soft Matter, 8, 2110-2120 (2012).
  • M. Kofu, T. Someya, S. Tatsumi, K. Ueno, T. Ueki, M. Watanabe, T. Matsunaga, M. Shibayama, V. G. Sakai, M. Tyagi and O. Yamamuro, Soft Matter, 8, 7888-7897 (2012).
  • K. Matsumoto and T. Endo, Macromolecules, 41, 6981-6986 (2008).
  • J. F. Stanzione, R. E. Jensen, P. J. Costanzo and G. R. Palmese, ACS Appl. Mater. Interfaces, 4, 6142-6150 (2012).
  • J. Fuller, A. C. Breda and R. T. Carlin, J. Electrochem. Soc., 144, L67-L70 1997.
  • J. C. Ribot, C. Guerrero-Sanchez, R. Hoogenbooma and U. S. Schubert, Chem. Commun., 46, 6971-6973 (2010).
  • K. Rawat, V. K. Aswal and H. B. Bohidar, J. Phys. Chem. B., 116, 14805-14816 (2012).
  • A. Ajji and L. Choplin, Macromolecules, 24, 5221-5223 (1991).

Abstract Views: 284

PDF Views: 2




  • Characterization of DNA-Protein Complex Ionogels Using Small Angle Neutron Scattering, Differential Scanning Calorimetry and Rheology

Abstract Views: 284  |  PDF Views: 2

Authors

Kamla Rawat
Special Centre for Nano Sciences, Jawaharlal Nehru University, New Delhi-110 067, India

Abstract


We have studied the structural and thermo-mechanical properties of DNA-protein (gelatin A, GA) complex gels formed in imidazolium based ionic liquid solutions called ionogels generated has a result of first order phase transition from a complex coacervate. We probed the microscopic structure of these ionogels using Small Angle Neutron Scattering (SANS), differential scanning calorimetry (DSC) and rheological measurements. Data show that around 0.1% (w/v) GA concentration stiffening of DNA-GA complex takes place (optimum binding concentration). At higher temperature, the GA-DNA binding weakens and GA-GA interaction facilitates the reorganization of the material which on heating turns into ionosols. Ionosols when cooled to room temperature formed ionogels. The typical size of the complexes is a 150 nm (radius of gyration, Rg). SANS experiments indicate a mesh size, ξ≈3.8 ± 0.2 nm to these gels independent of protein concentration CGA. Viscoelastic studies reveal that the storage and loss moduli (G' and G") values that are comparable, and the viscoelastic length ξel is typically double the mesh size of the network. It is found that these ionogels were associated with higher gel strength, and specific heat at optimum binding conditions. It is concluded that the DNA-gelatin complex ionogels comprise a unique class of designer soft material stable with respect to protein concentration change, higher gel strength and melting temperature compared to conventional gelatin gels.

Keywords


DNA, Gelatin, Ionogels, SANS, Rheology, Specific Heat.

References