Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Photo-Current Enhancement in the Cu/rGO/n-Cu2O Photo-Electrode at Electrolyte Interface


Affiliations
1 Nano-Technology Research Laboratory, Department of Electronics, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
     

   Subscribe/Renew Journal


A simple method was found to fabricate Cu/rGO/n-Cu2O photo-electrode to enhance the photocurrent with compared to the device Cu/n-Cu2O photo-electrode at semiconductor-electrolyte interface. Reduced graphene oxide (rGO) was fabricated on a well cleaned copper sheet using electrophoretic deposition (EPD) technique to fabricate Cu/rGO. Thereafter Cu/rGO electrode was boiled in a 10-4M CuSO4 solution to fabricate Cu/rGO/n-Cu2O photo-electrode for the first time. Here The rGO acts as a good electron acceptor ton-Cu2O photo-generated electrons enhancing the charge separation process suppressing the recombination process of the photo-generated charge carriers.

Keywords

n-Cu2O, rGO, Photoelectron Chemical Cell.
User
Subscription Login to verify subscription
Notifications
Font Size

  • Tran, P. D., Batabyal, S. K., Pramana, S. S., Barber, J., Wong, L. H., and Loo Nanoscale, S. C. J. (2012). A cuprous oxide–reduced graphene oxide (Cu 2 O–rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu 2 O, 4, 3875-3878
  • Fernando, C. A. N., and Wetthasinghe, S. K. (2000). Sol. Energy Mater. Sol. Cells, 63, 299-308
  • Prashant, V. K. (2011). Journal of Physical Chemistry Leters, 2, 242-251
  • Guo, S., Zhang, G. K. Guo, Y. D., and Yu, J. C. (2013). Carbon, 60, 437-444
  • Hu, S. J., Chi, B., Pu, J., and Jian, L., (2014). RSC Advances, 4, 60437-60444
  • An, S. J., Zhu, Y., Lee, S. H., Stoller, M. D., Emilsson, T., Park, S., Velamakanni, A., An, J., and Ruoff, R. S. (2010). The Journal of Physical Chemistry Letters, 1, 1259
  • Hummers, W. S., and Offeman, R. E. (1958). Journal of the American Chemical Society, 80, 1339
  • Fernando, C. A. N., De Silva, P. H. C., Wethasinha, S. K., Dharmadasa, I. M., Delsol, T., and Simmonds, C. M. (2002). Renew. Energy, 26, 521-529
  • Zhang, Y., Tang, Z., Fu, X., and Xu, Y. (2010). ACS Nano, 4, 7303-7314

Abstract Views: 201

PDF Views: 3




  • Photo-Current Enhancement in the Cu/rGO/n-Cu2O Photo-Electrode at Electrolyte Interface

Abstract Views: 201  |  PDF Views: 3

Authors

S. P. A. U. K. Samarakoon
Nano-Technology Research Laboratory, Department of Electronics, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
K. A. S. K. Hemachandra
Nano-Technology Research Laboratory, Department of Electronics, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
C. A. N. Fernando
Nano-Technology Research Laboratory, Department of Electronics, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka

Abstract


A simple method was found to fabricate Cu/rGO/n-Cu2O photo-electrode to enhance the photocurrent with compared to the device Cu/n-Cu2O photo-electrode at semiconductor-electrolyte interface. Reduced graphene oxide (rGO) was fabricated on a well cleaned copper sheet using electrophoretic deposition (EPD) technique to fabricate Cu/rGO. Thereafter Cu/rGO electrode was boiled in a 10-4M CuSO4 solution to fabricate Cu/rGO/n-Cu2O photo-electrode for the first time. Here The rGO acts as a good electron acceptor ton-Cu2O photo-generated electrons enhancing the charge separation process suppressing the recombination process of the photo-generated charge carriers.

Keywords


n-Cu2O, rGO, Photoelectron Chemical Cell.

References