Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Polyaniline Based Composite of Non-Covalently Dispersed Multiwalled Carbon Nanotubes for Supercapacitor Electrode


Affiliations
1 Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
2 University Grants Commission of Bangladesh, 29/1 Agargaon, Sher-E-Banglanagar, Dhaka, Bangladesh
     

   Subscribe/Renew Journal


A composite of Multiwalled Carbon Nanotubes (MWCNTs) and polyaniline (PAni) was synthesized by in situ oxidative polymerization of aniline monomers on poly (sodium 4-styrenesulfonate) (PSS) dispersed MWCNTs to produce coaxial structures of MWCNT-PAni composite. The structural, morphological, thermal, surface, and capacitive properties of the composite were analyzed. Scanning electron microscopy images of the composite revealed nanofibrous structure. Infrared spectrum showed slight shifts for several bands of the composite from the bands of PAni to suggest that the MWCNTs have strong attractive interactions with the PAni backbone. The composite was fabricated onto a graphite electrode and the fabricated electrode was characterized using cyclic voltammetry. The fabricated electrode exhibited specific capacitance values of 446 Fg-1, and the value retained 82.5% after 800 cycles. Owing to the good capacitance behavior and cycling stability, the synthesized composite holds promise for energy storage devices like supercapacitors.

Keywords

Carbon Nanotube, Non-Covalent Functionalization, Polyaniline, Supercapacitor.
User
Subscription Login to verify subscription
Notifications
Font Size

  • S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.
  • P. J. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications, Cambridge University Press, p. 301, 2009.
  • H. Pan, J. Li, and Y. P. Feng, “Carbon nanotubes for supercapacitor,” Nanoscale Res. Lett., vol. 5, pp. 654-668, 2010.
  • M. Campos, and B. Bello Jr., “Mechanism of conduction in doped polyaniline,” J. Phys. D: Appl. Phys., vol. 30, pp. 1531-1535, 1997.
  • S. J. Tang, A. T. Wang, S. Y. Lin, K. Y. Huang, C. C. Yang, J. M. Yeh, and K. C. Chiu, “Polymerization of aniline under various concentrations of APS and HCl,” Polym. J., vol. 43, pp. 667-675, 2011.
  • W. Lu, and L. Dai, “Carbon Nanotube Supercapacitors,” In: Carbon Nanotubes (ed. J. M. Marulanda) pp. 563-589, INTECH Open Access Publisher, 2010.
  • Y. K. Zhou, B. L. He, W. J. Zhou, J. Huang, X. H. Li, B. Wu, and H. L. Li, “Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites,” Electrochim. Acta, vol. 49, pp. 257-262, 2004.
  • V. Gupta, and N. Miura, “Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors,” Electrochim. Acta, vol. 52, pp. 1721-1726, 2006.
  • H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, and Z. Gu, “Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability,” Electrochem. Commun., vol. 10, pp. 1056-1059, 2008.
  • Y. Zhou, Z. Y. Qin, L. Li, Y. Zhang, Y. L. Wei, L. F. Wang, and M. F. Zhu, “Polyaniline/multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode materials,” Electrochim Acta, vol. 55, pp. 3904-3908, 2010.
  • M. Hughes, M. S. P. Shaffer, A. C. Renouf, C. Singh, G. Z. Chen, D. J. Fray, and A. H. Windle, “Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole,” Adv. Mater., vol. 14, pp. 382-385, 2002.
  • M. Hughes, G. Z. Chen, M. S. P. Shaffer, D. J. Fray, and A. H. Windle, “Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole,” Chem. Mater., vol. 14, pp. 1610-1613, 2002.
  • J. Wang, Y. Xu, X. Chen, and X. Sun, “Capacitance properties of single wall carbon nanotube/polypyrrole composite films,” Compos. Sci. Technol., vol. 67, pp. 2981-2985, 2007.
  • K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, and Y. H. Lee, “High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole,” J. Electrochem. Soc., vol. 149, pp. A1058-A1062, 2002.
  • E. Frackowiak, and F. Be'guin, “Carbon materials for the electrochemical storage of energy in capacitors,” Carbon, vol. 39, pp. 937-950, 2001.
  • D. Belanger, X. Ren, J. Davey, F. Uribe, and S. Gottesfeld, “Characterization and long‐term performance of polyaniline‐based electrochemical capacitors,” J. Electrochem. Soc., vol. 147, pp. 2923-2929, 2000.
  • F. Fusalba, P. Gouerec, D. Villers, and D. Belanger, “Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors,” J. Electrochem. Soc., vol. 148, pp. A1-A6, 2001.
  • Y. Liu, T. Cui, and K. Varahramyan, “Fabrication and characteristics of polymeric thin-film capacitor,” Solid-State Electron., vol. 47, pp. 811-814, 2003.
  • Y. Liu, T. Cui, and K. Varahramyan, “All-polymer capacitor fabricated with inkjet printing technique,” Solid-State Electron., vol. 47, pp. 1543-1548, 2003.
  • B. C. Kim, J. M. Ko, and G. G. Wallace, “A novel capacitor material based on Nafion-doped polypyrrole,” J. Power Sources, vol. 177, pp. 665-668, 2008.
  • K. C. Liu, and M. A. Anderson, “Porous nickel oxide/nickel films for electrochemical capacitors,” J. Electrochem. Soc., vol. 143, pp. 124-130, 1996.
  • V. Srinivasan, and J. W. Weidner, “An electrochemical route for making porous nickel oxide electrochemical capacitors,” J. Electrochem. Soc., vol. 144, pp. L210-L213, 1997.
  • M. S. Wu, and P. C. J. Chiang, “Fabrication of nanostructured manganese oxide electrodes for electrochemical capacitors,” Electrochem. Solid-State Lett., vol. 7, pp. A123-A126, 2004.
  • M. S. Wu, Y. A. Huang, C. H. Yang, and J. J. Jow, “Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors,” Int. J. Hydrogen Energy, vol. 32, pp. 4153-4159, 2007.
  • X. Lang, A. Hirata, T. Fujita, and M. Chen, “Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors,” Nature Nanotech., vol. 6, pp. 232-236, 2011.
  • L. Chen, L. J. Sun, F. Luan, Y. Liang, Y. Li, and X. X. Liu, “Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles,” J. Power Sources, vol. 195, pp. 3742-3747, 2010.
  • X. Li, H. Zhang, G. Wang and Z. Jiang, “A novel electrode material based on a highly homogeneous polyaniline/titanium oxide hybrid for high-rate electrochemical capacitors,” J. Mater. Chem., vol. 20, pp. 10598-10601, 2010.
  • B. X. Zou, Y. Liang, X. X. Liu, D. Diamond, and K. T. Lau, “Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite,” J. Power Sources, vol. 196, pp. 4842-4848, 2011.
  • J. G. Wang, Y. Yang, Z. H. Huang, and F. Kang, “Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors,” J. Power Sources, vol. 204, pp. 236-243, 2012.
  • T. Osaka, X. Liu, M. Nojima, and T. Momma, “An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder,” J. Electrochem. Soc., vol. 146, pp. 1724-1729, 1999.
  • K. Okajima, A. Ikeda, K. Kamoshita, and M. Sudoh, “High rate performance of highly dispersed C60 on activated carbon capacitor,” Electrochim. Acta, vol. 51, pp. 972-977, 2005.
  • C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, “High power electrochemical capacitors based on carbon nanotube electrodes,” Appl. Phys. Lett., vol. 70, pp. 1480-1482, 1997.
  • B. Zhang, J. Liang, C. L. Xu, B. Q. Wei, D. B. Ruan, and D. H. Wu, “Electric double-layer capacitors using carbon nanotube electrodes and organic electrolyte,” Mater. Lett., vol. 51, pp. 539-542, 2001.
  • J. H. Chen, W. Z. Li, D. Z. Wang, S. X. Yang, J. G. Wen, and Z. F. Ren, “Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors,” Carbon, vol. 40, pp. 1193-1197, 2002.
  • C. Du, and N. Pan, “High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition,” Nanotechnology, vol. 17, pp. 5314-5318, 2006.
  • W. Lu, L. Qu, K. Henry, and L. Dai, “High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes,” J. Power Sources, vol. 189, pp. 1270-1277, 2009.
  • D. Yu, and L. Dai, “Self-assembled graphene/carbon nanotube hybrid films for supercapacitors,” J. Phys. Chem. Lett., vol. 1, pp. 467-470, 2010.
  • P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review,” Composites: Part A, vol. 41, pp. 1345-1367, 2010.
  • B. McCarthy, J. N. Coleman, R. Czerw, A. B. Dalton, D. L. Carroll, and W. J. Blau, “Microscopy studies of nanotube-conjugated polymer interactions,” Synth. Met., vol. 121, pp. 1225-1226, 2001.
  • D. E. Hill, Y. Lin, A. M. Rao, L. F. Allard, and Y. P. Sun, “Functionalization of carbon nanotubes with polystyrene,” Macromolecules, vol. 35, pp. 9466-9471, 2002.
  • X. Gong, J. Liu, S. Baskaran, R. D. Voise, and J. S. Young, “Surfactant-assisted processing of carbon nanotube/polymer composites,” Chem. Mater., vol. 12, pp. 1049-1052, 2002.
  • S. Cui, R. Canet, A. Derre, M. Couzi, and P. Delhaes, “Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing,” Carbon, vol. 41, pp. 797-809, 2003.
  • L. Vaisman, G. Marom, and H. D. Wagner, “Dispersions of surface‐modified carbon nanotubes in water‐soluble and water‐insoluble polymers,” Adv. Funct. Mater., vol. 16, pp. 357-363, 2006.
  • Y. Geng, M. Y. Liu, J. Li, X. M. Shi, and J. K. Kim, “Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites,” Composites: Part A, vol. 39, pp. 1876-1883, 2008.
  • Q. Li, J. Liu, J. Zou, A. Chunder, Y. Chen, and L. Zhai, “Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors,” J. Power Sources, vol. 196, pp. 565-572, 2011.
  • X. Zhang, J. Zhang, and Z. Liu, “Tubular composite of doped polyaniline with multi-walled carbon nanotubes,” Appl. Phys. A, vol. 80, pp. 1813-1817, 2005.
  • K. R. Reddy, B. C. Sin, C. H. Yoo, D. Sohn, and Y. Lee, “Coating of multiwalled carbon nanotubes with polymer nanospheres through microemulsion polymerization,” J. Colloid Interface Sci., vol. 340, pp. 160-165, 2009.
  • Y. Yu, B. Che, Z. Si, L. Li, W. Chen, and G. Xue, “Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion,” Synthetic Met., vol. 150, pp. 271-277, 2005.
  • H. Guo, H. Zhu, H. Lin, and J. Zhang, “Synthesis of polyaniline/multi-walled carbon nanotube nanocomposites in water/oil microemulsion,” Mater. Lett., vol. 62, pp. 3919-3921, 2008.
  • L. Shi, R. P. Liang, and J. D. Qiu, “Controllable deposition of platinum nanoparticles on polyaniline-functionalized carbon nanotubes,” J. Mater. Chem., vol. 22, pp. 17196-17203, 2012.
  • P. B. Balbuena, and K. E. Gubbins, “Theoretical interpretation of adsorption behavior of simple fluids in slit pores,” Langmuir, vol. 9, pp. 1801-1814, 1993.
  • S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc., vol. 60, pp. 309-319, 1938.
  • H. Jiang, L. Yang, C. Li, C. Yan, P. S. Lee, and J. Ma, “High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires,” Energy Environ. Sci., vol. 4, pp. 1813-1819, 2011.
  • R. K. Sharma, and L. Zhai, “Multiwall carbon nanotube supported poly (3, 4-ethylenedioxythiophene)/manganese oxide nano-composite electrode for super-capacitors,” Electrochim. Acta, vol. 54, pp. 7148-7155, 2009.
  • S. R. Sivakkumar, W. J. Kim, J. A. Choi, D. R. MacFarlane, M. Forsyth, and D. W. Kim, “Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors,” J. Power Sources, vol. 171, pp. 1062-1068, 2007.
  • Y. Zhou, Z. Y. Qin, L. Li, Y. Zhang, Y. L. Wei, L. F. Wang, and M. F. Zhu, “Polyaniline/multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode materials,” Electrochim. Acta, vol. 55, pp. 3904-3908, 2010.
  • J. Zhang, L. B. Kong, B. Wang, Y. C. Luo, and L. Kang, “In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors,” Synthetic Met., vol. 159, pp. 260-266, 2009.
  • J. Q. Dong, and Q. Shen, “Enhancement in solubility and conductivity of polyaniline with lignosulfonate modified carbon nanotube,” J. Polym. Sci. Part B: Polym. Phys., vol. 47, pp. 2036-2046, 2009.

Abstract Views: 240

PDF Views: 6




  • Polyaniline Based Composite of Non-Covalently Dispersed Multiwalled Carbon Nanotubes for Supercapacitor Electrode

Abstract Views: 240  |  PDF Views: 6

Authors

Nabila Nabi Nova
Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
Md. Mominul Islam
Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
Saika Ahmed
Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
M. Muhibur Rahman
Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
M. Yousuf A. Mollah
University Grants Commission of Bangladesh, 29/1 Agargaon, Sher-E-Banglanagar, Dhaka, Bangladesh
Md. Abu Bin Hasan Susan
Department of Chemistry, University of Dhaka, Dhaka, Bangladesh

Abstract


A composite of Multiwalled Carbon Nanotubes (MWCNTs) and polyaniline (PAni) was synthesized by in situ oxidative polymerization of aniline monomers on poly (sodium 4-styrenesulfonate) (PSS) dispersed MWCNTs to produce coaxial structures of MWCNT-PAni composite. The structural, morphological, thermal, surface, and capacitive properties of the composite were analyzed. Scanning electron microscopy images of the composite revealed nanofibrous structure. Infrared spectrum showed slight shifts for several bands of the composite from the bands of PAni to suggest that the MWCNTs have strong attractive interactions with the PAni backbone. The composite was fabricated onto a graphite electrode and the fabricated electrode was characterized using cyclic voltammetry. The fabricated electrode exhibited specific capacitance values of 446 Fg-1, and the value retained 82.5% after 800 cycles. Owing to the good capacitance behavior and cycling stability, the synthesized composite holds promise for energy storage devices like supercapacitors.

Keywords


Carbon Nanotube, Non-Covalent Functionalization, Polyaniline, Supercapacitor.

References