Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Select Bibliography:Carbide Inserts


     

   Subscribe/Renew Journal


Cemented carbide is a hard material used extensively in cutting for machining, as well as other industrial applications. It consists of fine particles of carbide cemented into a composite by a binder metal. Cemented carbides commonly use tungsten carbide (WC), titanium carbide (TiC), or tantalum carbide (TaC) as the aggregate. Mentions of "carbide" or "tungsten carbide" in industrial contexts usually refer to these cemented composites.

Most of the time, carbide cutters will leave a better surface finish on the part, and allow faster machining, than high-speed steel or other tool steels. Carbide tools can withstand higher temperatures at the cutter-workpiece interface than standard high-speed steel tools (which is a principal reason for the faster machining). Carbide is usually superior for the cutting of tough materials such as carbon steel or stainless steel, as well as in situations where other cutting tools would wear away faster, such as high-quantity production runs.


User
Subscription Login to verify subscription
Notifications
Font Size

Abstract Views: 209

PDF Views: 0




  • Select Bibliography:Carbide Inserts

Abstract Views: 209  |  PDF Views: 0

Authors

Abstract


Cemented carbide is a hard material used extensively in cutting for machining, as well as other industrial applications. It consists of fine particles of carbide cemented into a composite by a binder metal. Cemented carbides commonly use tungsten carbide (WC), titanium carbide (TiC), or tantalum carbide (TaC) as the aggregate. Mentions of "carbide" or "tungsten carbide" in industrial contexts usually refer to these cemented composites.

Most of the time, carbide cutters will leave a better surface finish on the part, and allow faster machining, than high-speed steel or other tool steels. Carbide tools can withstand higher temperatures at the cutter-workpiece interface than standard high-speed steel tools (which is a principal reason for the faster machining). Carbide is usually superior for the cutting of tough materials such as carbon steel or stainless steel, as well as in situations where other cutting tools would wear away faster, such as high-quantity production runs.