Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Synthesis of Hexagonal YMnO3 Nanoparticles by Sol-Gel Route and their Characterization


Affiliations
1 Department of Mechanical Engineering, SVU College of Engineering, Tirupati, India
2 Department of Physics, SV University, Tirupati, India
     

   Subscribe/Renew Journal


Hexagonal yttrium manganese oxide (h-YMnO3) nanoparticles were prepared by a modified citrate sol-gel process at a lower heating temperature (200°C-230°C) followed by grinding and calcination. The structure and morphology of the synthesized nanoparticles were studied using an X-ray diffraction (XRD) technique and scanning electron microscope (SEM). YMnO3 nanoparticles with a uniform micro structure were observed in SEM images. The XRD analysis showed that the prepared precursor powder was well crystallized. The elemental compositional analysis using energy-dispersive X-ray analysis (EDX) confirmed the elemental base composition of pure yttrium, manganese, and oxygen.

Keywords

Hexagonal, YMnO3, Nanoparticles, Citrate sol-gel Process, X-ray Diffraction.
User
Subscription Login to verify subscription
Notifications
Font Size

  • AJC Buurma, GR Blake, TTM Palstra, U Adem, Multiferroic Materials: Physics and Properties, Reference Module in Materials Science and Materials Engineering doi:10.1016/B978-0-12803581-8.09245-6.
  • S.F. Wang, H. Yang, T. Xian, X.Q. Liu, Size-controlled synthesis and photocatalytic properties of YMnO3 nanoparticles, Catalysis Communications 12, 2011, 625–628.
  • Nagesh Kumar, Anurag Gaur, G.D. Varma, Enhanced magnetization and magnetoelectric coupling in hydrogen treated hexagonal YMnO3, Journal of Alloys and Compounds 509 (2011) 1060–1064.
  • R. Dhinesh Kumar, R.Jayavel, Low-temperature hydrothermal synthesis and magnetic studies of YMnO3 nanorods, Materials Letters 113, 2013, 210–213.
  • Z. Brankovic, G. Brankovic, M. Pocuca-Nesic, Z. Marinkovic Stanojevic, M. Zunic, D. Lukovic Golic, R. Tararam, M. Cilense, M.A. Zaghete, Z. Jaglicic, M. Jagodic, J.A. Varela, Hydrothermally assisted synthesis of YMnO3, Ceramics International 41 (2015) 14293–14298.
  • I. Iliescu, M. Boudard, L. Rapenne, O. Chaix-Pluchery, H. Roussel, MOCVD selective growth of orthorhombic or hexagonal YMnO3 phase on Si (100 ) substrate, Applied Surface Science, 306 (2014) 27–32.
  • S.A. Nikolaev, V.G. Mazurenko, A.N. Rudenko, Influence of magnetic order on phonon spectra of multiferroic orthorhombic YMnO3, Solid State Communications, 164 (2013) 16–21.
  • Yan Ma, Yong Jun Wu, Xiang Ming Chen, Ji Peng Cheng, Yi Qi Lin, In situ synthesis of multiferroic YMnO3 ceramics by SPS and their characterization, Ceramics International, 35 (2009) 3051–3055.
  • Chao Zhang, Jie Su, Xiaofei Wang, Fengzhen Huang, Junting Zhang, Yaoyang Liu, Liang Zhang, Kangli Min, Zhijun Wang, Xiaomei Lu, Feng Yan, Jinsong Zhu, Study on magnetic and dielectric properties of YMnO3 ceramics, Journal of Alloys and Compounds 509 (2011) 7738– 7741.
  • M. Tomczyk, A.M.O.R. Senos, I.M. Reaney and P.M. Vilarinho, Reduction of microcracking in YMnO3 ceramics by Ti substitution, Scripta Materialia, 67 (2012) 427–430.
  • Yan R. Kucherov, Thermodyne, Inc., PiezoPyroelectric energy converter and method, United States Patent, [11] Patent Number: 5,644,184, [45] Date of Patent: Jul. 1, 1997.
  • Richard Laneand Benjamin Craig, Material E A S E, The AMPTIAC Quarterly, Volume 7, No 2.
  • Kyu-Jeong Choi , Woong-Chul Shin & Soon-Gil Yoon, Characteristics of ferroelectric YMnO3 thin films for MFISFET by MOCVD, Integrated Ferroelectrics ISSN: 1058-4587 (Print) 1607-8489 (Online).
  • Kyoung-Tae Kim,Chang-Il Kim, The effects of drying temperature on the crystallization of YMnO3 thin films prepared by sol-gel method using alkoxides, Journal of the European Ceramic Society, 24 (2004) 2613–2617.
  • Kiyoharu Tadanaga, Hiroya Kitahata, Tsutomu Minami, Norifumi Fujimura, and Taichiro ITO, Preparation and Dielectric Properties of YMnO3 Ferroelectric Thin Films by the Sol-Gel Method, Journal of Sol-Gel Science and Technology 13, 903–907 (1998).
  • Aijun Han, Minchun Zhao, Mingquan Ye, Juanjuan Liao, Zhimin Zhang, Nan Li, Crystal structure and optical properties of YMnO3 compound with high near-infrared reflectance, Solar Energy 91, 2013, 32–36.
  • C. Balamurugan, D.W. Lee, Perovskite hexagonal YMnO3 nanopowder as p-type semiconductor gas sensor for H2S detection, Sensors and Actuators B, 221 (2015) 857–866.
  • Tai-Chun Han, Wei-Lun Hsu, Wei-Da Lee, Grain size-dependent magnetic and electric properties in nanosized YMnO3 multiferroic ceramics, Nanoscale Research Letters, 2011, 6:201.
  • Monika Tomczyk, Ana Maria Senos, Paula Maria Vilarinhoand Ian Michael Reaney, Origin of microcracking in YMnO3 ceramics, Scripta Materialia, 66 (2012) 288–291.
  • Monika Tomczyk, Paula Maria Vilarinho, Agostinho Moreira, and Abílio Almeida, High- temperature dielectric properties of YMnO3 ceramics, Journal of Applied Physics,110, 064116 (2011).
  • E. Rokuta, Y. Hotta, H. Tabata, H. Kobayashi, and T. Kawai, Low leakage current characteristics of YMnO3 on Si(111) using an ultrathin buffer layer of silicon oxynitride, Journal of Applied Physics, 88, 6598 (2000).
  • A. Posadas, J.B. Yau, C. H. Ahn, J. Han, S. Gariglio, K. Johnston, K. M. Rabe, and J. B. Neaton, Epitaxial growth of multiferroic YMnO3 on GaN, Applied Physics Letters 87,171915 (2005).
  • K.R. Balasubramanian, Kai-Chieh Chang, Feroz A. Mohammad, Lisa M. Porter, Paul A. Salvador, Jeffrey DiMaio, Robert F. Davis, Growth and structural investigations of epitaxial hexagonal YMnO3 thin films deposited on wurtzite GaN (001) substrates, Thin Solid Films 515 (2006) 1807–1813.
  • [X. Marti, F. Sanchez, D. Hrabovsky, J. Fontcuberta, V. Laukhin, V. Skumryev, M.V. Garcia-Cuenca, C.
  • Ferrater, M. Varela, U. Luders, J.F. Bobo, S. Estrade, J. Arbiol, F. Peiro, Epitaxial growth of biferroic YMnO3 (0 0 0 1) on platinum electrodes, Journal of Crystal Growth 299 (2007) 288–294.
  • Shiqing Deng, Shaobo Cheng, Ming Liu, and Jing Zhu, Modulating Magnetic Properties by Tailoring In-Plane Domain Structures in Hexagonal YMnO3 Films, ACS Applied Materials and Interfaces 2016, 8, 25379−25385.
  • Zhong Chen, Chun-Lu Ma, Fei-Xiang Wu, Y.B. Chen, Jian Zhou, Guo-Liang Yuan, Zheng-Bin Gu,Shan-Tao Zhang,Yan-Feng Chen, The electrical and magnetic properties of epitaxial orthorhombic YMnO3 thinfilms grown under various oxygen pressures, Applied Surface Science, 257 (2011) 8033–8037.
  • Runlan Zhang, Changle Chen, Mengmeng Duan, Liwei Niu, Kexin Jin, Piezoelectric, ferroelectric properties of multiferroic YMnO3 epitaxial film studied by piezoresponse force microscopy, Journal of Crystal Growth, 390 (2014) 56–60.
  • Aboalqasim Alqat, Zohra Gebrel, Vladan Kusigerski, Vojislav Spasojevic, Marian Mihalik, Matus Mihalik, Jovan Blanusa, Synthesis of hexagonal YMnO3 from precursor obtained by the glycine-nitrate process, Ceramics International 39 (2013) 3183–3188.
  • Andrey Gavrikov, Pavel Koroteev, Andrey Ilyukhin, Nikolay Efimov, Andreas K. Kostopoulos, Aleksandr Baranchikov, Aleksandr Tyurin, Denis Kirdyankin, Konstantin Gavrichev, Floriana Tuna, Zhanna Dobrokhotova, New synthesis route for obtaining carbon-free hexagonal RE manganites via novel simple individual precursors. The interplay between magnetic and thermodynamic properties of hexagonal RMnO3 (R=Ho-Yb, Y), Polyhedron, 2016

Abstract Views: 407

PDF Views: 2




  • Synthesis of Hexagonal YMnO3 Nanoparticles by Sol-Gel Route and their Characterization

Abstract Views: 407  |  PDF Views: 2

Authors

O. Nirmala
Department of Mechanical Engineering, SVU College of Engineering, Tirupati, India
Y. Bhargavi
Department of Mechanical Engineering, SVU College of Engineering, Tirupati, India
P. Sreedhara Reddy
Department of Physics, SV University, Tirupati, India
V. Diwakar Reddy
Department of Mechanical Engineering, SVU College of Engineering, Tirupati, India

Abstract


Hexagonal yttrium manganese oxide (h-YMnO3) nanoparticles were prepared by a modified citrate sol-gel process at a lower heating temperature (200°C-230°C) followed by grinding and calcination. The structure and morphology of the synthesized nanoparticles were studied using an X-ray diffraction (XRD) technique and scanning electron microscope (SEM). YMnO3 nanoparticles with a uniform micro structure were observed in SEM images. The XRD analysis showed that the prepared precursor powder was well crystallized. The elemental compositional analysis using energy-dispersive X-ray analysis (EDX) confirmed the elemental base composition of pure yttrium, manganese, and oxygen.

Keywords


Hexagonal, YMnO3, Nanoparticles, Citrate sol-gel Process, X-ray Diffraction.

References