Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Development and Experimental Study of Copper Selenide based Thermo-Electric Material by the Method of Powder Metallurgy


Affiliations
1 Department of Mechanical Engineering, Vemana Institute of Technology, Bangalore, Karnataka, India
2 Department of Mechanical Engineering, SV University, Tirupati, Andhra Pradesh
     

   Subscribe/Renew Journal


Copper Selenide is one of the promising single crystal thermoelectric material for power generation in low temperature range 300 - 360 K. Universal testing machine is used for pressing the Nano powder to obtain the Nano bulk samples. By using X-ray diffraction (XRD) and scanning electronic microscope (SEM) identified the structure and phase composition. This study shown that 150 kN pressing force in sample without carbon nano tubes showed ZT=1.2 at a temperature of 322K. It is also shown that thermal conductivity and power factor is mainly influencing the value of thermoelectric efficiency of the studied materials.

Keywords

Thermoelectric Materials, Nano Scale, Green Synthesis, Figure of Merit.
User
Subscription Login to verify subscription
Notifications
Font Size


  • Development and Experimental Study of Copper Selenide based Thermo-Electric Material by the Method of Powder Metallurgy

Abstract Views: 386  |  PDF Views: 0

Authors

J. Subramanyam
Department of Mechanical Engineering, Vemana Institute of Technology, Bangalore, Karnataka, India
G. Bhanodaya Reddy
Department of Mechanical Engineering, SV University, Tirupati, Andhra Pradesh
B. G. Vijayasimha Reddy
Department of Mechanical Engineering, Vemana Institute of Technology, Bangalore, Karnataka, India

Abstract


Copper Selenide is one of the promising single crystal thermoelectric material for power generation in low temperature range 300 - 360 K. Universal testing machine is used for pressing the Nano powder to obtain the Nano bulk samples. By using X-ray diffraction (XRD) and scanning electronic microscope (SEM) identified the structure and phase composition. This study shown that 150 kN pressing force in sample without carbon nano tubes showed ZT=1.2 at a temperature of 322K. It is also shown that thermal conductivity and power factor is mainly influencing the value of thermoelectric efficiency of the studied materials.

Keywords


Thermoelectric Materials, Nano Scale, Green Synthesis, Figure of Merit.

References