Open Access
Subscription Access
Open Access
Subscription Access
Coating on Surface by Different Methods – A Review
Subscribe/Renew Journal
The material has different properties, because of this properties material have different application. Sometime due to chemical reaction corrosion is done on material surface, due to oxide material degradation is occur and impact of solid particles on surface erosion is occur. So to increase the corrosion resistance different kind of coatings can be done on surface like steel, aluminums, alloys. This corrosion decreases the life of the material and decrease the properties. For coating deposition laser cladding, magnetron-sputtering, thermal spray (HVOF) methods are use. This coating is requiring in aerospace application, oil and gas industries, high temperature application and turbine industry.
Keywords
Degradation, Coatings, Hot Corrosion, Erosion, Oxidation, Prevention.
User
Subscription
Login to verify subscription
Font Size
Information
- Sidhu, T.S., Agrawal, R.D., & Prakash, S. (2005). Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings - a review. Surface and Coatings Technology, 198. 441-446. 10.1016/j.surfcoat.2004.10.056.
- Montemor, M. (2014). Functional and smart coatings for corrosion protection: A review of recent advances. Surface and Coatings Technology, 258, 17-37. 10.1016/j.surfcoat.2014.06.031.
- Kajánek, D., Hadzima, B., Buhagiar, J., Wasserbauer, J., & Jacková, M. (2019). Corrosion degradation of AZ31 magnesium alloy coated by plasma electrolytic oxidation. Transportation Research Procedia, 40, 51-58.10.1016/j.trpro.2019.07.010.
- Wee, S.K., & Yap, Y.J. (2019). CFD study of sand erosion in pipeline. Journal of Petroleum Science and Engineering, 176, 269-278.
- Padhy, M., & Saini, R.P. (2008). A review on silt erosion in hydro turbines. Renewable and Sustainable Energy Reviews, 12(7), 1974-1987. 10.1016/j.rser.2007.01.025.
- Slot, H., Gelinck, E., Rentrop, C., & Van Der Heide, E. (2015). Leading edge erosion of coated wind turbine blades: Review of coating life models. Renewable Energy, 80, 837-848. 10.1016/j.renene.2015.02.036.
- Hollerweger, R., Riedl, H., Arndt, M., Kolozsvári, S., Primig, S., & Mayrhofer, P. (2019). Guidelines for increasing the oxidation resistance of Ti-Al-N based coatings. Thin Solid Films, 688. 10.1016/j.tsf.2019.05.009.
- Vasudev, H., Thakur, L., & Bansal, A. (2019). High Temperature Oxidation and Wear Resistant Bi-Layer Coating for Turbocharger Housing. In Methods for Film Synthesis and Coating Procedures. IntechOpen. 10.5772/intechopen.86806.
- Wang, R., Dong, T-S., Di, Y-l., Wang, H-d., Li, G-l., & Liu, L. (2019). High temperature oxidation resistance and thermal growth oxides formation and growth mechanism of double-layer thermal barrier coatings. Journal of Alloys & Compounds, 798, 773-783.
- Basuki, E., Crosky, A., & Gleeson, B. (1997). Interdiffusionbehaviour in aluminide-coated Rene 80H at 1150°C. Material Science & Engineering: A. 224(1-2), 27-32.
- Du, H.L., Kipkemoi, J., Tsipas, D.N., & Datta, P.K. (1996). The high temperature corrosion behaviour of Hfmodified chromo-aluminised coatings produced by a single step process. Surface & Coatings Technology, 86-87(1), 1-8.
- Wen, X., Bai, P., Luo, B., Zheng, S., & Chen, C. (2018). Review of recent progress in the study of corrosion products of steels in a hydrogen sulphide environment. Corrosion Science, 139, 124-140. 10.1016/j.corsci.2018.05.002.
- Csaki, I., Ragnasdottir, K., Buzaianu, A., Leosson, K., Motoiu, V., Guðlaugsson, S., Lungu, M-V., Haraldsdottir, H., Karlsdottir, S. (2018). Nickel based coatings used for erosion-corrosion protection in a geothermal environment. Surface and Coatings Technology, 350, 531-541. DOI:10.1016/j.surfcoat.2018.07.029.
- Fan, Q.F., Jiang, D.L., J. Gong, Wu., & Sun, C. (2013). Preparation and hot corrosion behaviour of two Co modified NiAl coatings on a Ni-based superalloy. Corrosion Science, 76, 373-381.
- Calderon, J.A., Jimenez, J.P., & Zuleta, A.A. (2016). Improvement of the erosion-corrosion resistance of magnesium by electroless Ni- P/Ni(OH)2-ceramic nanoparticle. Surface & Coating Technology, 304, 167-178.
- Munro R.G. (2000). Material Properties of Titanium Diboride. Journal of research of the National Institute of Standards and Technology, 105(5), 709–720. https://doi.org/10.6028/jres.105.057
- Iwona, S., Kowalik, R., & Hyjek, P. (2016). The corrosion and mechanical properties of spark plasma sintered composites reinforced with titanium diboride. Journal of Alloys and Compounds, 688(A). 1195-1205. 10.1016/j.jallcom.2016.07.132.
- Homaeian, A., & Alizadeh, M. (2016). Interaction of hot corrosion and creep in Alloy 617 . Engineering Failure Analysis, 66, 373-384. 10.1016/j.engfailanal.2016.03.012.
- Chitrakar, S., Neopane, H., & Dahlhaug, O. (2016). Study of the simultaneous effects of secondary flow and sediment erosion in Francis turbines. Renewable Energy, 97, 881–891. 10.1016/j.renene.2016.06.007.
- Kwok, C.T., Man, H.C., Cheng, F., & Lo, K.H. (2016). Developments in laser-based surface engineering processes: With particular reference to protection against cavitation erosion. Surface and Coatings Technology, 291. 10.1016/j.surfcoat.2016.02.019.
- Yan, Z., Liu, W., Tang, Z., Liu, X., Zhang, N., & Wang, Z. (2019). Effect of thermal characteristics on distortion in laser cladding of AISI 316L. Journal of Manufacturing Processes, 44, 309-318. 10.1016/j.jmapro.2019.06.011.
- Gao, W., Chang, C., Li, G., Xue, Y., Wang, J., Zhang, Z., & Lin, X. (2018). Study on the laser cladding of FeCrNi coating. Optik, 178, 950-957. 10.1016/j.ijleo.2018.10.062.
- Liu, Y., Wu, Y., Ma, Y., Gao, W., Yang, G., Fu, H., Xi, N., & Chen, H. (2019). High temperature wear performance of laser cladding Co06 coating on high-speed train brake disc. Applied Surface Science, 481, 761-766. 10.1016/j.apsusc.2019.02.235.
- Weng, F., Chen, C., & Yu, H. (2014). Research status of laser cladding on titanium and its alloys: A review. Materials & Design, 58. 412-425. 10.1016/j.matdes.2014.01.077.
- Jin, G., Cai, Z., Guan, Y., Cui, X., Liu, Z., Li, M., Dong, M., Dan zhang (2018). High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating. Applied Surface Science, 445, 113–122. https://doi.org/10.1016/j.apsusc.2018.03.135.
- Sproul, W.D. (1996). Physical vapor deposition tool coatings. Surface & Coating Technology, 81( 1), 1-7.
- Kelly, P.J., & Arnell, R.D. (2000). Magnetron sputtering: a review of recent developments and applications. Vaccum, 56(3), 159-72.
- Landälv, L., Carlström, C.-F., lu, jun., Primetzhofer, D., Jõesaar, M.J., Ahlgren, M., Göthelid, E., Alling, B., Hultman, L., & Eklund, P. (2019). Phase composition and transformations in magnetron-sputtered (Al,V)2O3 coatings. Thin Solid Films, 688, 137369. 10.1016/j.tsf.2019.06.019.
- Golosov, D.A. (2017). Balanced magnetic field in magnetron sputtering systems. Vaccum, 139, 109-116.
- Kaune, G., Hagedorn, D., & Loffler, F. (2016). Magnetron sputtering process for homogeneous internal coating of hollow cylinders. Surface & Coating Technology, 308, 57-61.
- Hajare, A.S., Gogte, C.L. (2018). Comparative study of wear behaviour of Thermal Spray HVOF coating on 304 SS. Materials Today: proceedings, 5(2), 6924-6933.
- Picas, J.A., Punset Fuste, M., Rupérez, E., Menargues, S., Martin, E., Baile, M. (2018). Corrosion mechanism of HVOF thermal sprayed WC-CoCr coatings in acidic chloride media. Surface and Coatings Technology, 371, 378-388. 10.1016/j.surfcoat.2018.10.025.
- Kiilakoskia, J., Langladeb, C., Koivuluotoa, H., & Vuoristoa, P. (2019). Characterizing the micro-impact fatigue behavior of APS and HVOF-sprayed ceramic coatings. Surface & Coating Technology, 371, 245-254.
- Xi, N., Liu, Y., Zhang, X., Liu, N., Fu, H., Hang, Z., Yang, G., Chen, H., & Gao, W. (2018). Steady Anti-icing Coatings on Weathering Steel Fabricated by HVOF Spraying. Applied Surface Science, 444, 757-762. 10.1016/j.apsusc.2018.03.075.
Abstract Views: 264
PDF Views: 0