Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Investigation on Corrosion Resistance of 316 γ Stainless Steel Clad Constructional Steel


Affiliations
1 Kalyani Government Engineering College, Kalyani, West Bengal, India
     

   Subscribe/Renew Journal


Surfaces of structural members usually degrade under corrosion causing reduction in service life. This results in increased cost involving preventive methods or/and rework. Cladding is one such method for preventing this problem to some extent. Desired weld quality for gas metal arc welding process, a well-accepted method for developing clad layer and overlays, can be achieved by selecting appropriate process parameters. In the present investigation, gas metal arc welding is applied to develop 316 γ stainless steel clad layer on E350 constructional steel base plate with varying welding current and torch travel speed. Results indicate lowering of corrosion rate with increasing welding current and arc travel speed at a constant travel speed and constant current respectively. No clear trend of change in corrosion rate with the variation of heat input is seen. However, austenitic stainless steel cladding is found to improve corrosion resistance remarkably to apply to industry effectively.

Keywords

Welding, GMAW, Cladding, Austenitic Stainless Steel, Heat Input, Corrosion Resistance.
User
Subscription Login to verify subscription
Notifications
Font Size

  • Balan, A. V., Shivasankaran, N., & Magibalan, S. (2018). Optimization of cladding parameters for resisting corrosion on low carbon steels using simulated annealing algorithm. Materials Research Express, 5(4), 046527. DOI: 10.1088/2053-1591/aab7cb.
  • Besliu, M. M., Voiculescu, I., & Solomon, G. (2017). Effects of dilution on weld overlays realized with flux-cored arc welding (FCAW) process using 309LV filler metal on the S235JR steel. U.P.B. Scientific Bulletin, Series B, 79(1), 173-182.
  • Chakraborty, B., Das, H., Das, S., & Pal, T. K. (2013). Effect of process parameters on clad quality of duplex stainless steel using GMAW process. Transactions of the Indian Institute of Metals, 66(3), 221-230. DOI: 10.1007/s12666-013-0246-x.
  • Delong, W. T. (1974). Ferrite in austenitic stainless steel weld metal. Welding Journal, 53(7), 273s-286s.
  • Eghlimi, A., Shamanian, M., & Raeissi, K. (2014). Effect of current type on microstructure and corrosion resistance of super duplex stainless steel claddings produced by the gas tungsten arc welding process. Surface Coating Technology, 244, 45-51. DOI: 10.1016/j.surfcoat.2014.01.047.
  • Elmer, J. W., Allen, S. M., & Eager, T. W. (1989). Microstructural development during solidification of stainless steel alloys. Metallurgical Transactions A, 20A(10), 2117-2131.
  • Gharibshahiyan, E., Raouf, A. H., Parvin, N., & Rahimian, M. (2011). The Effect of Microstructure on Hardness and Toughness of Low Carbon Welded Steel using Inert Gas Welding. Journal of Materials and Design, 32, 2042–2048.
  • Gorunov, A. I., Nyukhlaev, O. A., & Gilmutdinov, A. K. (2018). Investigation of microstructure and properties of low-carbon steel during ultrasonic-assisted laser welding and cladding. International Journal of Advanced Manufacturing Technology, 99, 2467–2479. DOI: 10.1007/s00170-018-2620-7.
  • Joseph, G.B., Valarmathi, T.N., Mageshwaran, G., Jeevahan, J., Sriram, V., & Durai, R.R.B. (2019). Studies on the Influence of Welding Parameters in Cladding of ERNiCrMo-10 on AISI 4140 Using GMAW Process. Advances in Manufacturing Technology. Lecture Notes in Mechanical Engineering, Springer, Singapore. 615-621. DOI: 10.1007/978-981-13-6374-0_67.
  • Kannan, T., & Murugan, N. (2006). Effect of flux cored arc welding process parameters on duplex stainless steel clad quality. Journal of Materials Processing Technology, 176, 230–239.
  • Kaushal, S., Gupta, D., & Bhowmick, H. (2018). On surface modification of austenitic stainless steel using microwave processed Ni/Cr3C2 composite cladding. Surface Engineering, 34(11), 809-817. DOI: 10.1080/02670844.2017.1362808.
  • Khamari, B. K., Karak, S. K., & Biswal, B. B. (2019). Relation between different process parameters in gas metal arc welding. Indian Welding Journal, 52(2), 44-55. DOI:10.22486/iwj.v52i2.181779.
  • Lailatul, P. H., & Maleque, M. A. (2017). Surface modification of duplex stainless steel with SiC preplacement using TIG torch cladding. Procedia Engineering, 184, 734-782. DOI: 10.1016/j.proeng.2017.04.151.
  • Liu, J., Yu, H., Chen, C., Weng, F., & Dai, J. (2017). Research and development status of laser cladding on magnesium alloys: a review. Optics Lasers Engineering, 93, 195-210. DOI: 10.1016/j.optlaseng.2017.02.007.
  • Mondal, A., Saha, M. K., Hazra, R., & Das, S. (2016). Influence of heat input on weld bead geometry using duplex stainless steel wire electrode on low alloy steel specimens. Cogent Engineering. 3(1), 1143598/1-14. DOI: 10.1080/23311916.2016.1143598.
  • Om, H., & Pandey, S. (2013). Effect of Heat Input on Dilution and Heat Affected Zone in Submerged Arc Welding Process. Sadhana, 38(6), 1369–1391. DOI: 10.1007/s12046-013-0182-9.
  • Prabhu, R., & Alwarsamy, T. (2017). Effect of process parameters on ferrite number in cladding of 317L stainless steel by pulsed MIG welding. Journal of Mechanical Science and Technology, 31, 1341-1347. DOI: 10.1007/s12206-017-0234-x.
  • Prajapati, P., Badheka, V. J., & Mehta, K. P. (2018). Hybridization of filler wire in multi-pass gas metal arc welding of SA516 Gr70 carbon steel. Materials and Manufacturing Processes. 33(3), 315-322. DOI: 10.1080/10426914.2016.1244847.
  • Sabiruddin, K., Bhattacharya, S., & Das, S. (2013). Selection of appropriate process parameters for gas metal arc welding of medium carbon steel specimens. International Journal of Analytical Hierarchy Process, 5(2), 252-266. DOI: 10.13033/ijahp.v5i2.184.
  • Saha, M. K., & Das, S. (2016). A Review on Different Cladding Techniques Employed to Resist Corrosion. Journal of the Association of Engineers, 86(1-2), 51–63. DOI: 10.22485/jaei/2016/v86/i1-2/119847.
  • Saha, M. K., & Das, S. (2018). Gas Metal Arc Weld Cladding and its Anti-Corrosive Performance- A Brief Review. Athens Journal of Technology and Engineering, 5(2), 155-174. DOI: 10.30958/ajte.5-2-4.
  • Saha, M. K., Das, S., & Bandyopadhyay, A. (2012). Application of L6 orthogonal array for optimal selection of some process parameters in GMAW process, Indian Welding Journal, 45(4), 41-50. DOI: 10.22486/iwj.v45i4.141203.
  • Saha, M. K., Hazra, R., Mondal, A., & Das, S. (2018). Effect of heat input on geometry of austenitic stainless steel weld bead on low carbon steel. Journal of Institution of Engineers (India), Series C, 100(4), 607-615. DOI 10.1007/s40032-018-0461-7.
  • Saha, M. K., Mondal, A., Hazra, R., & Das, S. (2018). Anticorrosion performance of FCAW cladding with regard to the influence of heat input. Journal of Welding and Joining, 36(5), 61-69. DOI 10.5781/JWJ.2018.36.5.8.
  • Saha, M. K., Mondal, J., Mondal, A., & Das, S. (2018). Influence of heat input on corrosion resistance of duplex stainless steel cladding using flux cored arc welding on low alloy steel flats. Indian Welding Journal, 51(3), 66-72. DOI:10.22486/iwj.v51i3.175002.
  • Schaeffler, A. L. (1949). Constitution diagram for stainless steel weld metal. Metal Progress, 56(5), 680-680B.
  • Verma, A. K., Biswas, B. C., Roy, P., De, S., Saren, S., & Das, S. (2013). Exploring quality of austenite stainless steel clad layer obtained by metal active gas welding. Indian Science Cruiser, 27(4), 24-29. DOI:10.24906/isc/2013/v27/i4/177608.
  • Walters, W. S., Durham, P., & Hodge, N. A. (2018). The adsorption and desorption of water from a carbonaceous deposit layer on the surface of stainless steel representing spent AGR nuclear fuel cladding. Journal of Nuclear Science Technology, 55(4), 374-385. DOI: 10.1080/00223131.2017.1403384.

Abstract Views: 196

PDF Views: 0




  • Investigation on Corrosion Resistance of 316 γ Stainless Steel Clad Constructional Steel

Abstract Views: 196  |  PDF Views: 0

Authors

Jaydeep Mondal
Kalyani Government Engineering College, Kalyani, West Bengal, India
Manas Kumar Saha
Kalyani Government Engineering College, Kalyani, West Bengal, India
Santanu Das
Kalyani Government Engineering College, Kalyani, West Bengal, India

Abstract


Surfaces of structural members usually degrade under corrosion causing reduction in service life. This results in increased cost involving preventive methods or/and rework. Cladding is one such method for preventing this problem to some extent. Desired weld quality for gas metal arc welding process, a well-accepted method for developing clad layer and overlays, can be achieved by selecting appropriate process parameters. In the present investigation, gas metal arc welding is applied to develop 316 γ stainless steel clad layer on E350 constructional steel base plate with varying welding current and torch travel speed. Results indicate lowering of corrosion rate with increasing welding current and arc travel speed at a constant travel speed and constant current respectively. No clear trend of change in corrosion rate with the variation of heat input is seen. However, austenitic stainless steel cladding is found to improve corrosion resistance remarkably to apply to industry effectively.

Keywords


Welding, GMAW, Cladding, Austenitic Stainless Steel, Heat Input, Corrosion Resistance.

References