Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Study on influence of process parameters in hot rolling of al 7178 metal matrix materials


Affiliations
1 1 Maturi Venkata Subba Rao (MVSR) Engineering College, Hyderabad, Telangana, India, India
2 Maturi Venkata Subba Rao (MVSR) Engineering College, Hyderabad, Telangana, India., India
3 University College of Engineering, Osmania University, Hyderabad, Telangana, India, India
4 Brilliant Institute of Engineering Technology, Hyderabad, Telangana, India, India
5 HCL Technologies, Hyderabad, Telangana, India, India
     

   Subscribe/Renew Journal


Aluminium and its alloys are in demand for the manufacturing of components due to their high strength to weight ratio. As the technology is advanced the demand for high strength to weight ratio is increased exponentially. Many researchers are explore alternatives to pure aluminium by way of adding silicon and metal matrix of Mg, SiC and Al2 O3 . The present work aims at preparation of optimized Al7178 by stir casting process and extruding to preparation of aluminium matrix materials consisting silicon carbide and aluminium oxide (Al2 O3 ) powder of 40µm particle size at 6% weight percentage with a objective of investing the influence of process parameters of hot rolling process. Investigation is undertaken in order to minimize the rolling force of Al7178 aluminium metal matrix in hot rolling forming process where in the process parameters inlet thickness, rolling speed, percentage reduction of thickness, rolling temperature are considered as input parameters. Experimentation on hot rolling process concludes that 6% weight percentage of SiC and Al203 needs minimum rolling force 2.6 and 1.3 kN corresponding to 9mm inlet thickness, 15rpm rolling speed, 10% of thickness reduction at rolling temperature of 600ᵒC.

Keywords

Al 7178 alloy, Silicon Carbide (SiC), Aluminium Oxide (Al2 O3 ), Taguchi Method.
User
Subscription Login to verify subscription
Notifications
Font Size

  • Azpen, Q. M., Baharudin, B. T. H. T., Shamsuddin, S., & Mustapha, F. (2018). Reinforcement and hot workability of aluminium alloy 7075 particulate composites: A review. Journal of Engineering Science and Technology, 13(4), 1034 – 1057.
  • Bagheripoor, M., & Bisadi, H. (2014). An investigation on the roll force and torque fluctuations during hot strip rolling process. Production and Manufacturing Research, 2(1). https://doi.org/10.1080/21693277.2014. 895916
  • Bharath, V., Nagaral, Madev., Auradi, V., & Koric, S. A. (2014). Preparation of 6061Al-Al2 O3 MMC by stir casting and evaluation of mechanical and wear properties. Procedia Materials Science, 6, 1658 – 1667.
  • Changqing, H., Hua, D, Jie, C, Xinghua, H. U., & Shuangcheng, Y. (2011). Research on rolling force model in hot-rolling process of aluminum alloys. Procedia Engineering, 16, 745 – 754.
  • Dhaneswara, D., Syahrial, A. Z., & Ayman, M. T. (2017). Mechanical properties of nano SiC-reinforced aluminum A356 with Sr modifier fabricated by stir casting method. Procedia Engineering, 216, 43-50. https://doi. org/10.1016/j.proeng.2018.02.087
  • Ezatpour, H. R., Sajjadi, S. A., Sabzevar, M. H., & Huang, Y. (2014). Investigation of microstructure and mechanical properties of Al6061- nanocomposite fabricated by stir casting. Materials and Design, 55, 921-928. https://doi. org/10.1016/j.matdes.2013.10.060
  • Fukuda, Y., Noda, M., Ito, T., Suzuki, K., Saito, N & Chino, Y. (2017). Effect of Reduction in Thickness and Rolling Conditions on Mechanical Properties and Microstructure of Rolled Mg-8Al1Zn-1Ca Alloy. Advances in Materials Science and Engineering, 1-9.
  • Gupta, R. K., Anil Kumar, V., Sarath Krishnan, A., & Niteshraj, J. (2019). Hot deformation behavior of aluminum alloys AA7010 and AA7075. Journal of Materials Engineering and Performance, 28(8). https://doi.org/10.1007/s11665-019- 04231-8
  • Hallberg, H. (2013). Influence of process parameters on grain refinement in AA1050 aluminum during cold rolling. International Journal of Mechanical Sciences, 66, 260-272. https://doi.org/10.1016/j.ijmecsci. 2012.11.016
  • Kandpal, B. C., Kumar, J., & Singh, H. (2017). Fabrication and characterisation of Al2O3/ aluminium alloy 6061 composites fabricated by stir casting. Materials Today: Proceedings, 4(2), 2783–2792. https://doi.org/10.1016/j. matpr.2017.02.157
  • Kumar, T. V., Jayashankar, G., Srinivas, B., Jithendra, J., & Sumedh, M. (2017). Effect of rolling on hardness of aluminium metal matrix composites-an experimental study. International Journal of Mechanical Engineering and Technology, 8(5), 525-530.
  • Lei, Q., Li, Z., Wang, J., Xie, J. M., Chen, X., Li, S., Gao, Y., & Li, L. (2013). Hot working behavior of a super high strength Cu-Ni-Si alloy. Materials and Design, 51, 1104-1109. https://doi. org/10.1016/j.matdes.2013.05.001
  • Mao, D., Zhang, B., Li, J., Li, Z., & Shi, C. (2012). Effect of hot-rolling and warm-rolling process on properties of cast-rolling AZ31B magnesium alloy strip. Procedia Engineering, 27, 887-894. https://doi.org/10.1016/j. proeng.2011.12.535
  • Mathai, B., Mathew, C., Pratheesh, K., & Varghese, C. K. (2015). Effect of silicon on microstructure and mechanical properties of Al-Si piston alloys. International Journal of Engineering Trends and Technology, 29(6), 299-303.
  • Mazahery, A & Shabani, M. O. (2011). Investigation on mechanical properties of nano-Al2O3- reinforced aluminum matrix composites. Journal of Composite Materials, 45(24), 2579–2586.
  • Mondal, D. P., Jha, N., Badkul, A., Das, S., Yadav, M. S., & Jain, P. (2011). Effect of calcium addition on the microstructure and compressive deformation behaviour of 7178 aluminium alloy. Materials and Design, 32(5), 2803–2812. https://doi.org/10.1016/j.matdes. 2010.12.056
  • Muniamuthu, S., Raju, N. L., Sathishkumar, S., & Kumar, K. S. (2016). Investigation on mechanical properties of Al 7075-Al2O3 metal matrix composite. International Journal of Mechanical Engineering and Technology, 7(6).
  • Nagaral, M. (2013). Effect of Al2O3 particles on mechanical and wear properties of 6061al alloy metal matrix composites. Journal of Material Science & Engineering, 2(1).
  • Nayan, N., Gurao, N. P., Narayana Murty, S. V. S., Jha, A. K., Pant, B., Sharma, S. C., & George, K. M. (2015). Microstructure and microtexture evolution during large strain deformation of an aluminium-copper-lithium alloy AA 2195. Materials and Design, 65, 662-668.
  • Pandey, A., Khan, A. S., Kim, E. Y., Choi, S. H., & Gnäupel-Herold, T. (2013). Experimental and numerical investigations of yield surface, texture, and deformation mechanisms in AA5754 over low to high temperatures and strain rates. International Journal of Plasticity, 41, 165-188.
  • Puneeth, H. M., Girish, K. B., & Vasudevamurthy, B. H. (2015). Experimental Investigation and Mechanical Behavior of A356.1 Aluminium Alloy Matrix Composite Reinforced With Silicon Carbide. International Research Journal of Engineering and Technology (IRJET), 2(3), 774–778.
  • Raghavendra, M. J., Praveen Kumar, K., Arun, R., & Arjun, S. (2017). A study on microstructure and characterization of aluminum 7075 metal matrix reinforced with silicon carbide particles using stir casting method. International Journal of Research in Engineering and Technology, 6(12). https://doi.org/10.15623/ijret.2017.0612015
  • Rajabi, F., Zarei-Hanzaki, A., Eskandari, M., & Khoddam, S. (2013). The effect of rolling parameters on the mechanical bevavior of 6061 aluminium alloy. Material Science & Engineering: A, 578, 90-95.
  • Rana, R. S., Purohit, Rajesh., Mishra, P. M., Sahu, Pramod & Dwivedi, Shailendra. (2017). Optimization of mechanical properties of AA 5083 Nano SiC composites using design of experiment technique. Materials Today: Proceedings, 4(2), 3882–3890.
  • Rayjadhav, S. B., & Naik, V. R. (2016). Characterization of developed Al 6061-SiC metal matrix composites produced by the stir casting method. International Journal of Innovative Research in Science and Engineering, 2(3), 92-103.
  • Rebba, B., & Ramanaiah, N. (2014). Evaluation of Mechanical Properties of Aluminium Alloy (Al-2024) Reinforced with Molybdenum Disulphide (MOS2 ) Metal Matrix Composies. Procedia Materials Science, 6(1), 1161–1169.
  • Saroya, B., Singh, D., Jaswanti, & Meena, K. L. (2013). Experimental investigation to analysis of mechanical properties of the developed Al/ SiC-MMC’s. International Journal of Advanced Trends in Computer Science and Engineering, 2(1), 130-134.
  • Shafiei, E., & Dehghani, K. (2018). Effects of deformation conditions on the rolling force during variable gauge rolling. Journal of Manufacturing and Materials Processing, 2(3). https://doi.org/10.3390/jmmp2030048
  • Sharma. S., & Rana R. S. (2015). Optimization of mechanical behaviour of AA 5083 nano sic composites using design of experiment. Journal of Material Science & Engineering, 4(4).
  • Singh, M. (2016). Studying the mechanical properties of aluminum alloy reinforced with graphite and Al2O3 by stir casting process. National Journal of Advanced Research, 2(3), 04-09.
  • Veeresh Kumar, G. B., Rao, C. S. P., Selvaraj, N., & Bhagyashekar, M. S. (2010). Studies on Al6061-SiC and Al7075-Al2O3 Metal Matrix Composites. Journal of Minerals & Materials Characterization & Engineering, 9(1), 43-55.
  • Vijay Kumar, T., Jayashankar, G., Srinivas, B., Jithendra, J., & Sumedh, M. (2017). Effect of rolling on hardness of aluminium metal matrix composites-an experimental study. International Journal of Mechanical Engineering and Technology, 8(5), 525-530.
  • Yerrennagoudar, H., Goudar, D. M., Balaji, M., & Ravikumar, D. (2016). Studies on wear behaviour of aluminium 6061alloy reinforced with Al2 O3 & MICA particulates hybrid metal matrix composite, International Journal of Innovative Research in Science, Engineering and Technology, 5(6).
  • Zhang, H., Geng, L., Guan, L., & Huang, L. (2010). Effects of SiC particle pretreatment and stirring parameters on the microstructure and mechanical properties of SiCp/Al-6.8Mg composites fabricated by semi-solid stirring technique. Materials Science and Engineering A, 528(1), 513-518. https://doi.org/10.1016/j. msea.2010.09.046
  • Zhang, T., Wu, Y. X., Gong, H., Zheng, X. Z., & Jiang, S. S. (2014). Effects of rolling parameters of snake hot rolling on strain distribution of aluminum alloy 7075. Transactions of Nonferrous Metals Society of China (English Edition), 24(7), 2150-2156. https://doi.org/10.1016/S1003- 6326(14)63326-4

Abstract Views: 122

PDF Views: 0




  • Study on influence of process parameters in hot rolling of al 7178 metal matrix materials

Abstract Views: 122  |  PDF Views: 0

Authors

B. Ravikumar
1 Maturi Venkata Subba Rao (MVSR) Engineering College, Hyderabad, Telangana, India, India
S. Gajanana
Maturi Venkata Subba Rao (MVSR) Engineering College, Hyderabad, Telangana, India., India
A. Krishnaiah
University College of Engineering, Osmania University, Hyderabad, Telangana, India, India
M. Nagarjuna
Brilliant Institute of Engineering Technology, Hyderabad, Telangana, India, India
K. Rammadhav
HCL Technologies, Hyderabad, Telangana, India, India

Abstract


Aluminium and its alloys are in demand for the manufacturing of components due to their high strength to weight ratio. As the technology is advanced the demand for high strength to weight ratio is increased exponentially. Many researchers are explore alternatives to pure aluminium by way of adding silicon and metal matrix of Mg, SiC and Al2 O3 . The present work aims at preparation of optimized Al7178 by stir casting process and extruding to preparation of aluminium matrix materials consisting silicon carbide and aluminium oxide (Al2 O3 ) powder of 40µm particle size at 6% weight percentage with a objective of investing the influence of process parameters of hot rolling process. Investigation is undertaken in order to minimize the rolling force of Al7178 aluminium metal matrix in hot rolling forming process where in the process parameters inlet thickness, rolling speed, percentage reduction of thickness, rolling temperature are considered as input parameters. Experimentation on hot rolling process concludes that 6% weight percentage of SiC and Al203 needs minimum rolling force 2.6 and 1.3 kN corresponding to 9mm inlet thickness, 15rpm rolling speed, 10% of thickness reduction at rolling temperature of 600ᵒC.

Keywords


Al 7178 alloy, Silicon Carbide (SiC), Aluminium Oxide (Al2 O3 ), Taguchi Method.

References