Open Access Open Access  Restricted Access Subscription Access

Arbuscular Mycorrhiza: A Versatile Component for Alleviation of Salt Stress


Affiliations
1 Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Science, Banaras Hindu University, Varanasi-221 005, U. P., India
 

Salt-affected soil is one of the most serious abiotic stress that causes reduced plant growth, development and productivity worldwide. Plants, in their natural environment, are colonized both by external and internal microorganisms. These microorganisms, particularly beneficial bacteria and fungi, can improve plant performance under stress environments and, consequently, enhance yield. Arbuscular mycorrhizal (AM) fungi are associated with the ischolar_mains of over 80% terrestrial plant species including halophytes, hydrophytes and xerophytes. In this respect, bioreclamation using mycorrhiza for alleviating salt stress would be a better option. AM fungi promote plant growth and salinity tolerance by different ways, such as enhancing nutrient acquisition, producing plant growth hormones, improving rhizospheric and soil conditions, altering the physiological and biochemical properties of the host and defending ischolar_mains against soil-borne pathogens.

Keywords

Arbuscular Mycorrhiza, K/Na Ratio, Salt Stress, Bioreclamation.
User
Notifications
Font Size


  • Abdel Latef, A.A. 2010. Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Res. Comm., 38:43-55.
  • Abdel Latef, A.A. 2011a. Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza, 21: 495-503.
  • Abdel Latef, A.A., Chaoxing, H. 2014. Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants? J. Plant Growth Regulat., 33(3): 644-653.
  • Abdel Latef, A.A., Shaddad, K.A.M., Ismail, M.A. and Abu Alhmad, F.M. 2009. Benzyladenine can alleviate saline injury of two roselle (Hibiscus sabdariffa) cultivars via equilibration of cytosolutes including anthocyanins. Int. J. Agric. Biol., 11: 151–157
  • Abdel-Fattah, G.M., Ibrahim, A.H., Al-Amri, S.M., Shoker, A.E. 2013.Synergistic effect of arbuscular mycorrhizal fungi and spermine on amelioration of salinity stress of wheat (Triticum aestivum L. cv. gimiza 9). Australian Journal of Crop Science, 7: 1525-1532.
  • Abdel-Fattah, G.M., Abo-Hamed, S.A. and Mohamed, Z.A. 1996. The role of VA-mycorrhizal fungus (Glomus mosseae) and kinetin in alleviation of salinity stress in Pisum sativum plants. 1st International Conference on Fungi. Hopes & Challenges, Cairo, 2-5 Sept, pp. 67-81.
  • Adiku, S.G.K., Renger, M., Wessolek, G., Facklam, M. and Hecht-Bucholtz C. 2001. Simulation of the dry matter production and seed yield of common beans under varying soil water and salinity conditions. Agr.Water Manage., 47: 55-68.
  • Ahmad, R. and Chang, M.H. 2002. Salinity control and environmental protection through halophytes. J. Drain. Water Manage., 6: 17-25.
  • Al-Garni, S.M.S. 2006. Increasing NaCl-salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis. American-Eurasian Journal of Agricultural and Environmental Science, 1: 119-126.
  • Alguacil, M.M., Hernández, J.A., Caravaca, F., Portillo, B. and Roldán, A.2003. Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol. Plant., 118: 562-570.
  • Aliasgharzadeh, N., Saleh Rastin, N., Towfighi, H. and Alizadeh, A. 2001.Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza, 1: 119-122.
  • Al-Karaki, G.N. 2000. Growth and mineral acquisition by mycorrhizal tomato grown under salt stress. Mycorriza, 10: 51-54.
  • Al-Karaki, G.N. 2006. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae, 109: 1-7.
  • Al-Khaliel, A.S. 2010. Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae. Plant Soil Environ., 56: 318-324.
  • Annual Report, 2010-2011. Central Soil Salinity Research Institute, Karnal132 001, India
  • Asghari, H.R. 2008. Vesicular-arbuscular (VA) mycorrhiza improve salinity tolerance in pre-inoculation subterranean clover (Trifolium subterraneum). Int. J. Plant Produc., 2: 243-256.
  • Auge, R.M. 2004. Arbuscular mycorrhizae and soil/plant water relations. canadian Journal of Soil Science, 84: 373-381.
  • Azcon, R. and Atrash, F. 1997. Influence of arbuscular mycorrhizae and phosphorus fertilization on growth, nodulation and N2 fixation (15N) in medicago sativa at four salinity levels. Biol. Fertil. Soils., 24: 81-86.
  • Bauder, J.W., Brock, T.A. 1992. Crops species, amendment, and water quality effects on selected soil physical properties. Soil Science Society of America Journal, 56: 1292-1298.
  • Beltrano, J., Ruscitti, M., Arango, M.C. and Ronco, M. 2013. Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and P levels. J. Soil Sci. Plant Nutr., 13: 123-141.
  • Blaha, G., Stelzl, U., Spahn, C.M.T., Aggrawal, R.K., Frank, J. and Nierhaus, K.H. 2000. Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods in Enzymology, 317: 292-309.
  • Bohnert, H.J., Jensen, R.G. 1996. Strategies for engineering water-stress tolerance in plants. Trends. Biotechnol., 14: 89-97.
  • Cantrell, I.C. and Linderman, R.G. 2001. Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity.Plant and Soil, 233: 269-281.
  • Chander, K., Goyal, S. and Kapoor, K.K. 1994. Effect of sodic water irrigation and farm yard manure application on soil microbial biomass and microbial activity. Appl. Soil Ecol., 1: 139-144.
  • Chinnusamy, V., Jagendorf, A. and Zhu, J.K. 2005. Understanding and improving salt tolerance in plants. Crop. Sci., 45: 437-448.
  • Colla, G., Rouphael, Y., Cardarelli, M., Tullio, M., Rivera, C.M. and Rea, E. 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils, 44: 501-509.
  • Daei, G., Ardekani, M.R., Rejali, F., Teimuri, S. and Miransari, M. 2009. Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J. Plant. Physiol., 166: 617-625.
  • DeMars, B.G. and Boerner, R.E.J. 1996. Vesicular arbuscular mycorrhizla development in the Brassicaceae in relation to plant life span. Flora 191: 179-189.
  • Dudhane, M.P., Borde, M.Y. and Jite, P.K. 2011. Effect of arbuscular mycorrhizal fungi on growth and antioxidant activity in Gmelina arborea Roxb. under salt stress condition. Not. Sci. Biol., 3(4): 71-78.
  • El-Amri, M.S., Al-Whaibi, M.H., Abdel-Fattah, G.M., Siddiqui, M.H. 2013.Role of mycorrhizal fungi in tolerance of wheat genotypes to salt stress.African Journal of Microbiology Research, 7(14): 1286-1295.
  • El-Desouky, S.A. and Atawia, A.A.R. 1998. Growth perfomance of citrus ischolar_mainstocks under saline conditions. Alexandria Journal of Agricultural Research, 43: 231-254.
  • Estrada-Luna, A.A. and Davies, F.T. 2003. Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post acclimatization. J. Plant. Physiol., 160: 1073-1083.
  • Evelin, H., Giri, B. and Kapoor, R. 2012. Contribution of Glomusintraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonellafoenum-graecum. Mycorrhiza, 22: 203-217.
  • Evelin, H., Kapoor, R. and Giri, B. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann. Bot. 104: 1263-1280.
  • Feizi, M., Hajabbasi, M.A. and Mostafazadeh-Fard, B. 2010. Saline irrigation water management strategies for better yield of safflower (Carthamus tinctorius L.) in an arid region. Aust. J. Crop. Sci., 4: 408-414.
  • Feng, G., Zhang, F.S., Li, X.l., Tian, C.Y., Tang, C. and Rengel, Z. 2002.Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in ischolar_mains.Mycorrhiza, 12: 185-190.
  • Flowers, T.J. and Colmer, T.D. 2008. Salinity tolerance in halophytes. New.Phytol., 179: 945-963.
  • Frechill, S., Lasa, B., Ibarretxe, L., Lamsfus, C. and Aparicio Trejo, P. 2001.Pea response to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regulators, 35: 171-179.
  • Fuzy, A., Biro, B., Toth, T., Hildebrandt, U. and Bothe, H. 2008 Drought, but not salinity, determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. J. Plant. Physiol., 165: 1181-1192.
  • Galinski, E.A. 1995. Osmoadaptation in bacteria. Advances in Microbial Physiology, 37: 273-328.
  • Garg, N. and Manchanda, G. 2008. Effect of arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan(pigeonpea). Journal of Plant Growth Regulators, 27: 115-124.
  • Ghassemi, F., Jakerman, A.J. and Nix, H.A. 1995. Salinization of Land Water Resources. Wallingford: CAB International.
  • Giri, B., Kapoor, R. and Mukerji, K.G. 2003. Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biology and Fertility of Soils, 38: 170-175.
  • Giri, B., Kapoor, R. and Mukerji, K.G. 2007. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in ischolar_main and shoot tissues.Microb. Ecol., 54: 753-760.
  • Giri, B. and Mukerji, K. G. 2004. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake.Mycorrhiza, 14: 307-312.
  • Gorham, J. 1995. Betaines in higher plants-biosynthesis and role in stress metabolism. In: Wallsgrove, R.M. (ed.) Amino Acids and their Derivatives in Higher Plants. Cambridge University Press, Cambridge, pp. 173-203.
  • Graham, J.H. and Syversten, J.P. 1984. Influence of vesicular arbuscular mycorrhiza on the hydraulic conductivity of ischolar_mains of two Citrus ischolar_mainstocks.New. Phytol., 97: 277-284.
  • Hajiboland, R. 2013. Role of arbuscular mycorrhiza in amelioration of salinity.In: Ahmad, P. et al. (eds.) Salt Stress in Plants: Signalling, Omics and Adaptations. Springer, New York, pp. 301-354.
  • Hajiboland, R., Aliasgharzadeh, N., Laiegh, S.F. and Poschenreider, C. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil, 331: 313-327.
  • Hameed, A., Dilfuza, E., Abd-Allah, E.F., Hashem, A., Kumar, A. and Ahmad, P. 2014. Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Miransari, M. (ed.) Use of Microbes for the Alleviation of Soil Stresses, vol. 1. Springer, New York, pp. 139-159.
  • Ibrahim, A.H., Abdel-Fattah, G.M., Eman, F.M., Abdel-Aziz, M.H. and Shokr, A.E. 2011. Arbuscular mycorrhizal fungi and spermine alleviate the adverse effects of salinity stress on electrolyte leakage and productivity of wheat plants. Phyton., 51: 261-276.
  • Jahromi, F., Aroca, R., Porcel, R. and Ruiz-Lozano, J.M. 2008. Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology, 55: 45-53.
  • Jarstfer, A.G., Farmer-Koppenol, P. and Sylvia, D.M. 1998. Tissue magnesium and calcium affect mycorrhiza development and fungal reproduction. Mycorrhiza, 7: 237-242.
  • Javid, M.J., Sorooshzadeh, A., Moradi, F., Sanavy, S.A.M.M. and Allahdadi, I. 2011. The role of phytohormones in alleviating salt stress in crop plants. Aust. J. Crop. Sci., 5: 726-734.
  • Jindal, V., Atwal, A., Sekhon, B.S. and Singh, R. 1993. Effect of vesiculararbuscular mycorrhizae on of moong plants under NaCl salinity. Plant Physiol. Biochem. 3: 475-481.
  • Juniper, S. and Abbott, L. 1993. Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza, 4: 45-58.
  • Juniper, S. and Abbott, L.K. 2006. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza, 16: 371-379.
  • Kadian, N., Yadav, K., Badda, N. and Aggarwal, A. 2013. Application of arbuscular mycorrrhizal fungi in improving growth and nutrient of Cyamopsis Tetragonoloba (L.) Taub. under saline soil. International Journal of Agronomy and Plant Production, 4(11): 2796-2805.
  • Kaldorf, M., Schemelzer, E. and Bothe, H. 1998. Expression of maize and fungal nitrate reductase in arbuscular mycorhiza. Molecular PlantMicrobe Interactions, 11: 439-448.
  • Kapoor, R., Evelin, H., Mathur, P. and Giri, B. 2013. Arbuscular mycorrhiza: approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Tuteja, N. and Gill, S.S. (eds) Plant Acclimation to Environmental Stress. Springer, LLC, pp. 359-401.
  • Kapoor, R., Sharma, D. and Bhatnagar, A.K. 2008. Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci. Hortic., 116: 227-239.
  • Kaya, C., Ashraf, M., Sonme, O., Aydemir, S., Tuna, A.L. and Cullu M.A., 2009. The infuence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity.Sci. Hortic., 121: 1- 6.
  • Keskin, B.C., Sarikaya, A.T., Yuksel, B. and Memon, A.R. 2010. Abscisic acid regulated gene expressionin bread wheat. Aust. J. Crop. Sci., 4: 617-625.
  • Khan, A.G. 1974. The occurrence of mycorrhizas in halophytes, hydrophytes and xerophytes, and of endogone spores in adjacent soils. Journal of General Microbiology, 81: 7-14.
  • Khan, M.A. and Duke, N.C. 2001. Halophytes- A resource for the future. Wetland Ecology and Management, 6: 455-456.
  • Khare, V. and Rai, P. 2012. Microbial diversity and functions: taxonomic diversity of AM fungi in alkaline soils of upper Gangetic plains of Allahabad. In: D.J. Bagyaraj, K.V.B.R. Tilak, H.K.Kehri (ed.), Microbial Diversity and Functions (pp. 537-557), New Delhi: New India Publishing Agency.
  • Kishor, P.B., Hong, Z. and Miao, G.H. 1995. Overexpression of pyrroline5-carboxylate synthetase increases proline production and confersosmotolerance in transgenic plants. Plant Physiol., 108: 1387-1394.
  • Kothari, S.K., Marschner, H. and George, E. 1990. Effect of VA mycorrhizal fungi and rhizosphere on ischolar_main and shoot morphology, growth and water relations of maize. New. Phytol., 116: 303-311.
  • Landwehr, M., Hildebrand, U., Wilde, P., Nawrath, K., Tóth, T., Biro, B. and Bothe, H. 2002.The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza, 12: 199-211.
  • Laura, R.D. 1976. Effects of alkali salts on carbon and nitrogen mineralization of organic matter in soil. Plant and Soil, 44: 587-596.
  • Maathuis, F.J.M. 2009. Physiological functions of mineral macro nutrients. Curr. Opin. Plant. Biol., 12: 250-258.
  • Mahdy, A. M. 2011. Comparative effects of different soil amendments on amelioration of saline-sodic soils. Soil and Water Research, 6(4): 205-216.
  • Marschner, H. (eds.) 1995. Mineral Nutrition of Higher Plants, Second edition. Academic Press, London, UK.
  • Marschner, H. and Dell, B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159: 89-102.
  • Mathur, N., Singh, J., Bohra, S. and Vyas, A. 2007. Arbuscular mycorrhizal status of medicinal halophytes in saline areas of Indian Thar Desert. International Journal of Soil Science, 2: 119-127.
  • Munns, R., Husain, S., Rivelli, A.R., James, R.A., Condon, A.G., Lindsay, M.P., Lagudah, E.S., Schachtman, D.P. and Hare, R.A. 2002. Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant and Soil, 247: 93-105.
  • Muralev, E., Nazarenko, P.I., Poplavskij, V.M. and Kuznetsov I.A. 1997. Seawater desalination. In: Nuclear Desalinization of Seawater. Proceedings of a Symposium in Taejon, Republic of Korea. Vienna, Austria: International Atomic Energy Agency, pp. 355-366.
  • Murkute A.A., Sharma S. and Singh S.K. 2006 Studies on salt stress tolerance of citrus ischolar_mainstock genotypes with arbuscular mycorrhizal fungi. Hort. Sci., 33: 70-76.
  • Nielsen, M.N. and Winding, A. 2002. Microorganisms as indicators of soil health. National Envir. Res. Instt. Technical Rep. No. 338., Denmark.
  • Oren A. 1999. Bioenergetic aspects of halophilism. Microbiol. Molec. Biol. Rev., 65: 334-348.
  • Ouziad, F., Wilde, P., Schmelzer, E., Hildebrandt, U. and Bothe, H. 2006. Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ. Exp. Bot., 57: 177-186.
  • Paraviz, A. and Satyawati, S. 2008. Salt stress and phyto-biochemical responses of plants-a review. Plant Soil Environ., 54:89-99.
  • Parida, S.K., Das, A.B. 2005. Salt tolerance and salinity effects on plants.Ecotoxicology and Environment Safety, 60: 324-349.
  • Pathak, H. and Rao, D.L.N. 1998. Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol. Biochem., 30: 695-702.
  • Pearson, J.N. and Schweiger, P. 1993. Scutellospora calospora (Nicol. and Gerd.) Walker & Sanders associated with subterranean clover: dynamics of colonization, sporulation and soluble carbohydrates. New Phytol., 124: 215-219.
  • Peng, J., Li, Y., Shi, P., Chen, X., Lin, H. and Zhao, B. 2010 The differential behavior of arbuscular mycorrhizal fungi in interaction with Astragalus sinicus L. under salt stress. Mycorrhiza, 21: 27-33
  • Porcel, R., Aroca, R., and Ruiz-Lozano, J.M. 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev., 32: 181-200.
  • Porras-Soriano, A., Soriano-Martin, M.L., Porras-Piedra A. and Azcon, R. 2009. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J. Plant. Physiol., 166: 1350-1359.
  • Qadir, M., Oster, J.D., Schubert, S., Noble, A.D. and Sahrawat, K.L. 2007 Phytoremediation of sodic and saline-sodic soils. Adv. Agron., 96: 197-247.
  • Qiang-Sheng, Wu. and Ying-Ning Zou. 2011. Arbuscular mycorrhizal symbiosis improves growth and ischolar_main nutrient status of citrus subjected to salt stress. Science Asia, 35: 388-391.
  • Rabie, G.H. and Almadini, A.M. 2005. Role of bioinoculants in development of salt-tolerance of Viciafaba plants under salinity stress. Afri, J. Biotech., 4: 210-222.
  • Ramoliya, P.J., Patel, H.M. and Pandey, A.N. 2004. Effect of salinization of soil on growth and macro- and micro-nutrient accumulation in seedlings of Salvadora persica(Salvadoraceae). For. Ecol. Manag., 202: 181-193.
  • Rietz, D.N. and Haynes, R.J. 2003. Effect of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem., 35: 845-854.
  • Ruiz-Lozano, J.M. and Azcon R. 2000. Symbiotic efficiency and infectivity of an arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza, 10: 137-143.
  • Ruiz-Lozano, J.M., Collados, C., Barea, J.M. and Azcón, R. 2001. Arbuscular mycorrhizal symbiosis can alleviate drought induced nodule senescence in soybean plants. Plant Physiology, 82: 346-350.
  • Russell, J. and Bulman, S. 2005. The liverwort Marchantia foliacea forms a specialized symbiosis with arbuscular mycorrhizal fungi in the genus Glomus. New Phytol., 165: 567-579.
  • Sannazzaro, A.I., Ruiz, O.A., Albetro, E.O. and Mene´ndez, A.B. 2006. Alleviation of salt stress in lotus glaber by Glomus intraradies. Plant and Soil, 285: 279-287.
  • Schafer, W. 1982. Saline and Sodic Soils in Montana. 2B1272, Montana State University Extension Service. Bozeman, Montana.
  • Schubler, A. 2005. http://www.tu-darmstadt.de/fb/bio/bot/schuessler/amphylo/amphylogeny.Html. (Accessed Aug 2005).
  • Schubler, A., Schwarzott, D. and Walker, C. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res., 105: 1413-1421.
  • Selvakumar, G. and Thamizhiniyan, P. 2011. The Effect of the arbuscular mycorrhizal (AM) fungus Glomus intraradices on the growth and yield of chilli (Capsicum annuum L.) under salinity stress. World Applied Sciences Journal, 14(8): 1209-1214.
  • Sharifi, M., Ghorbanli, M. and Ebrahimzadeh, H. 2007. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of Plant Physiology, 164:1144-1151.
  • Sharma, B.R. and Minhas, P.S. 2005. Strategies for management saline/alkali waters for sustainable agricultural production in South Asia. Agric. Water Mgt., 78: 136-151.
  • Sharma, P., Jha, A.B., Dubey, R.S. and Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidant defense mechanism in plants under stressful conditions - a review. J. Bot., 2012: 126.
  • Shekofeh, E. and Sepideh, H. 2011. Efect of mycorhizal fungi on some physiological characteristics of salt stresed Ocimum basilcum L. Iran J. Plant Physiol., 1: 215-22.
  • Sheng, M., Tang, M., Chan, H., Yang, B., Zhang, F. and Huang, Y. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18: 287-296.
  • Sheng, M., Tang, M., Chen, H., Yang, B.W., Zhang, F.F. and Huang, Y.H. 2009. Influence of arbuscular mycorrhizae on the ischolar_main system of maize plants under salt stress. Can. J. Microbiol., 55: 879-886.
  • Shokri, S. and Maadi, B. 2009. Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. Journal of Agronomy, 8: 79-83.
  • Sjoberg, J. 2005. Arbuscular mycorrhizal fungi-occurrence in Sweden and interaction with a pathogenic fungus in barley. Ph.D. Thesis. Swedish Univ. Agri. Sci., Uppsala, pp. 1-5.
  • Smith, S.E. and Read, D.J. 2008. Mycorrhizal Symbiosis, 3rd edn. Academic, San Diego.
  • Subramanian, K.S. and Charest, C. 1999. Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza, 9: 69-75.
  • Szabolcs, I. 1989. Salt-affected Soils. Boca Raton, Fl: CRC Press.
  • Tahat, M.M. and Sijam, K. 2012. Mycorrhizal fungi and abiotic environmental conditions relationship. Res. J. Environ. Sci., 6: 125-133.
  • Talaat, N.B. and Shawky, B.T. 2014. Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ. Exp. Bot., 98: 20-31.
  • Tester, M. and Davenport, R. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot., 91: 503-527.
  • Tripathi, S., Kumari, S., Chakraborty, A., Gupta, A., Chakrabarti, K. and Bandyapadhyay, B.K. 2006. Microbial biomass and its activities in salt-affected coastal soils. Biol. Fertil. Soils, 42: 273-277.
  • U.S. Salinity Lab. Staff, 1954. Diagnosis and improvement of saline and alkali soils. Handb. 60. USDA, Washington D.C. USA.UniversityBozeman. USA.
  • Van der Heijden, M.G., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A. and Sanders, I.R. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396: 69-72.
  • Wang, W., Vinocu, B. and Altman, A. 2003. Plant responses to drought, salinity and extreme temperatures: toward genetic engineering for stress tolerance. Planta., 218: 1-14.
  • Wang, W., Vinocur, B., Shoseyov, O. and Altman, A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci., 9: 244-252.
  • Wu, Q.S. and Zou, Y.N. 2009. Mycorrhizal influenceon nutrient uptake of citrus exposed to drought stress. Philipp. Agric. Scientist, 92: 33-38.
  • Wu, Q.S., Zou, Y.N., Liu, W., Ye, X.F., Zai, H.F. and Zhao, L.J. 2010. Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defence systems. Plant Soil Environ., 56: 470-475.
  • Xu, G., Magen, H., Tarchitzky, J. and Kafkaki, U. 2000. Advances in chloride nutrition. Adv. Agron., 68: 96-150.
  • Yamato, M., Ikeda, S. and Iwase, K. 2008. Community of arbuscular mycorrhizal fungi in coastal vegetation on Okinawa Island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza, 18: 241-249.
  • Yokoi, S., Quintero, F.J., Cubero, B., Ruiz, M.T., Bressan, R.A., Hasegawa, P.M. and Pardo, J.M. 2002. Differential expression and function ofArabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J., 30: 529-539.
  • Younesi, O., Moradi, A. and Amdari, A. 2013. Influence of arbuscular mycorrhiza on osmotic adjustment compounds and antioxidant enzyme activity in nodules of salt-stressed soybean (Glycine max). Acta agriculturae Slovenica, 101-2.
  • Zhang, J., Jia, W., Yang, J. and Ismail, A.M. 2006. Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res., 97: 111-119.
  • Zuccarini, P. 2007. Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant, Soil and Environment, 53: 283-289.
  • Zuccarini, P. and Okurowska, P. 2008. Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J. Plant. Nutr., 31: 497-513.

Abstract Views: 243

PDF Views: 1




  • Arbuscular Mycorrhiza: A Versatile Component for Alleviation of Salt Stress

Abstract Views: 243  |  PDF Views: 1

Authors

Manoj Parihar
Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Science, Banaras Hindu University, Varanasi-221 005, U. P., India
Amitava Rakshit
Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Science, Banaras Hindu University, Varanasi-221 005, U. P., India

Abstract


Salt-affected soil is one of the most serious abiotic stress that causes reduced plant growth, development and productivity worldwide. Plants, in their natural environment, are colonized both by external and internal microorganisms. These microorganisms, particularly beneficial bacteria and fungi, can improve plant performance under stress environments and, consequently, enhance yield. Arbuscular mycorrhizal (AM) fungi are associated with the ischolar_mains of over 80% terrestrial plant species including halophytes, hydrophytes and xerophytes. In this respect, bioreclamation using mycorrhiza for alleviating salt stress would be a better option. AM fungi promote plant growth and salinity tolerance by different ways, such as enhancing nutrient acquisition, producing plant growth hormones, improving rhizospheric and soil conditions, altering the physiological and biochemical properties of the host and defending ischolar_mains against soil-borne pathogens.

Keywords


Arbuscular Mycorrhiza, K/Na Ratio, Salt Stress, Bioreclamation.

References