Open Access Open Access  Restricted Access Subscription Access

i-v Fuzzy Shortest Path in a Multigraph


Affiliations
1 Department of Computer Science & Engineering, Jamia Hamdard University, Hamdard Nagar, New Delhi – 62, India
 

In this research paper the author introduces the notion of i-v fuzzy multigraph. The classical Dijkstra’s algorithmic rule to search out the shortest path in graphs isn’t applicable to fuzzy graph theory. Consequently the author proposes a brand new algorithmic rule referred to as by IVF-Dijkstra’s algorithmic rule with the philosophy of the classical Dijkstra’s formula to unravel the SPP in an i-v fuzzy multigraph.

Keywords

i-v Fuzzy Number, IVFSPA, IVF-Dijkstra’s.
User
Notifications
Font Size

  • Abbasbandy, Saeid, Ranking of fuzzy numbers, some recent and new formulas, IFSA-EUSFLAT, 2009, Page 642- 646.
  • Allahviranloo, T., Abbasbandy, S. and Saneifard, R., A Method for Ranking of Fuzzy Numbers using New Weighted Distance, Mathematical and Computational Applications, Vol. 16, No. 2, Page 359-369, 2011.
  • Balakrishnan, V. K., Graph Theory, McGraw-Hill; 1997.
  • Bollobas, Bela., Modern Graph Theory, Springer; 2002
  • Dat, Luu Quoc, Yu, Vincent F. and Chou, Shuo-Yan, An Improved Ranking Method for Fuzzy Numbers Using Left and Right Indices, 2nd International Conference on Computer Design and Engineering, IPCSIT Vol 49, 2012, Page 89-94.
  • Diestel, Reinhard., Graph Theory, Springer 2000
  • Dubois,D. and Prade,H. , Fuzzy Sets and Systems, Academic Press, New York, 1980.
  • Farhadinia, B., Ranking Fuzzy Numbers based on Lexicoograhical Ordering, World Academy of Science, Engineering and Technology, 2009, Page 1029-1032.
  • Harary, Frank., Graph Theory, Addison Wesley Publishing Company, 1995
  • Jenson P. and Barnes J., Network Flow Programming, John Wiley & Sons, New York, 1980
  • J. Ivaneo, Decompositions of multigraphs into parts with the same size, Discussiones Mathematicae Graph Theory 30(2)(2010), 335-347.
  • J. Ivanèo, M. Meszka, Z. Skupieñ, Decompositions of multigraphs into parts with two edges, Discussiones Mathematicae Graph Theory 22(1)(2002), 113-121
  • K. Bryoe, M. Kouider, Z. Lonc, M. Maheo, Decomposition of multigraphs, Discussiones Mathematicae Graph Theory 18(2)(1998), 225-232
  • Klein, Cerry M., Fuzzy Shortest Paths, Fuzzy Sets and Systems 39 (1991) 27-41.
  • Mariusz Meszka and Zdzislaw Skupien, Decomposition of a Complete Multigraph into Almost Arbitrary Paths, Discussiones Mathematicae Graph Theory 32(2)(2012) 357–372.
  • Okada, S. and T. Soper., A Shortest Path Problem on a Network with Fuzzy Arc Lengths, Fuzzy Sets and Systems 109 (2000), 129–140.
  • Parandin,N. and Araghi, M.A. Fariborzi, Ranking of Fuzzy Numbers by Distance Method, Journal of Applied Mathematics, Islamic Azad University of Lahijan, Vol.5, No.19, 2008, Page 47-55.
  • Ranjit Biswas, Fuzzy Numbers Redefined, Information, Vol.15(4)(2012) 1369-1380.
  • Rao, P. Phani Bushan, and Shankar, N. Ravi, Ranking Fuzzy Numbers with a Distance Method using Circumcenter of Centroids and an Index of Modality, Advances in Fuzzy Systems, Volume 2011, Article ID 178308, page 1-7.
  • Saneifard, R. and Ezzati, R., A New Approach for Ranking Fuzzy numbers with Continuous Weighted Quasi-Arithmatic Means, Mathematical sciences, Vol. 4, No. 2(2010), Page 143-158.
  • Biswas, S. S., Alam, B. and Doja, M. N., A Theoretical Characterization of the Data Structure ‘Multigraphs’, Journal of Contemporary Applied Mathematics, Vol.2(2) December’2012, page 88-106.
  • Biswas, S. S., Alam, B. and Doja, M. N., A Generalized Real Time Multigraphs For Communication Networks : An Intuitionistic Fuzzy Theoretical Model, 17th International Conference on IFS, Sofia, Bulgaria, Proceedings published in Notes on Intuitionistic Fuzzy Sets (Bulgarian Journal) Vol.19 (3) 2013: pp 90-98, ISSN : 1310-4926
  • Biswas, S. S., Alam, B. and Doja, M. N., GRT-Multigraphs For Communication Networks : A Fuzzy Theoretical Model, International Symposium on System Engineering and Computer Simulation (SECS-2013), Held in Danang, Vietnam. Published at Advanced in Computer Science and its Applications, Series Title : Lecture Notes in Electrical Engineering (Springer Berlin Heidelberg Publications) , Vol. 279 2014, Pages 633-641, Print ISBN : 978-3-642-41673-6 , Online ISBN : 978-3-642-41674-3, doi: 10.1007/978-3-642-41674-3_91.
  • Biswas, S. S., Alam, B. and Doja, M. N., A Refinement of Dijkstra’s Algorithm For Extraction of Shortest Paths in GRT-Multigraphs, Journal of Computer Science, Vol.10 (4) 2013: pp 593-603, ISSN 1549-3636, doi: 10.3844/jcssp.2014.593.603.
  • Biswas, S. S., Alam, B. and Doja, M. N., Real Time Multigraphs For Communication Networks : An Intuitionistic Fuzzy Mathematical Model, Journal of Computer Science, Vol. 9 (7) 2013: pp 847-855, ISSN 1549-3636, doi: 10.3844/jcssp.2013.847.855.
  • Biswas, S. S., Alam, B. and Doja, M. N., Intuitionistic Fuzzy Real Time Multigraphs For Communication Networks : A Theoretical Model, AASRI Conference on Parallel and Distributed Computing and Systems (DCS 2013), Held in Singapore, Published by AASRI Proceedings (Elsevier Publications), Vol.5, 2013, Pages 114–119, doi: 10.1016/j.aasri.2013.10.066.
  • Biswas, S. S., Alam, B. and Doja, M. N., Real Time Graphs For Communication Networks : A Fuzzy Mathematical Model, Sadhana-Academy Proceedings in Engineering Sciences (Springer Publications) , ISSN (print version) : 0256-2499 ISSN(electronic version) : 0973-7677 , Journal no.: 12046.
  • Biswas, S. S., Alam, B. and Doja, M. N., A Slight Adjustment of Dijkstra’s Algorithm for Solving SPP in Real Time Environment, Third International Conference on Computational Intelligence and Information Technology – CIIT 2013, Held in Mumbai, India., Published at International Conference on ComNet CIIT & ITC 2013 Proceedings (Elsevier Publication), pp: 256-259 ISBN: 978-81-910691-6-3.
  • Biswas, S. S., Alam, B. and Doja, M. N., An Algorithm For Extracting Intuitionistic Fuzzy Shortest Path in A Graph, Applied Computational Intelligence and Soft Computing , Vol.2(2) 2012 (Hindawi Publishing Corporation), Article ID 970197, ISSN: 1687-9724 e-ISSN: 1687-9732, http://dx.doi.org/10.1155/2013/970197.
  • Biswas, S. S., Alam, B. and Doja, M. N., Fuzzy Shortest Path in A Directed Multigraph, European Journal of Scientific Research, Vol.101 (3) 2013: pp 333-339, ISSN 1450-216X / 1450-202X.
  • Biswas, S. S., Alam, B. and Doja, M. N., Generalization of Dijkstra’s Algorithm For Extraction of Shortest Paths in Directed Multigraphs, Journal of Computer Science, Vol.9 (3) 2013: pp 377-382, ISSN 1549-3636, doi: 10.3844/jcssp.2013.377.382.
  • Biswas, S. S., Alam, B. and Doja, M. N., A Theoretical Characterization of The Data Structure ‘Multigraph’ , Journal of Contemporary Applied Mathematics , Vol.2(2) 2012, pp 88-106 (Institute of Mathematics and Mechanics NAS of Azerbaijan) , ISSN: 2222-5498.
  • Biswas, R., On I-v fuzzy subgroups , Fundamenta Informatica, Vol. 26(1) (1996) 1-9.
  • Biswas, R., Rosenfeld’s fuzzy subgroups with interval-valued membership functions, Fuzzy Sets and Systems : An International Journal”, Vol.63 (1994) 87-90.
  • Biswas, R., I-v fuzzy relations and Sanchez’s approach for medical diagnosis, Fuzzy Sets and Systems : An International Journal “, Vol.47 (1992) 35-38.
  • Sujatha, L. and Elizabeth, Fuzzy Shortest Path Problem Based on Similarity Degree, Applied Mathematical Sciences, Vol. 5(66) 2011, Page 3263 – 3276.
  • Yao, Jing-Shing and Lin, Feng-Tse, Fuzzy Shortest-Path Network Problems With Uncertain Edge Weights, Journal of Information Science and Engineering 19(2003), Page 329-351.
  • Yu, Jing-Rung and Wei, Tzu-Hao, Solving the Fuzzy Shortest Path Problem by Using a Linear Multiple Objective Programming, Journal of the Chinese Institute of Industrial Engineers, Vol. 24, No. 5, pp. 360-365 (2007).
  • Zdzislaw Skupien, On Distance edge Coloring of a Cyclic Multigraph, Discussiones Mathematicae Graph Theory 19(1999) 251–252.
  • Zadeh, L.A., Fuzzy Sets, Inform. And Control, Vol.8(1965) 338-353.

Abstract Views: 318

PDF Views: 3




  • i-v Fuzzy Shortest Path in a Multigraph

Abstract Views: 318  |  PDF Views: 3

Authors

Siddhartha Sankar Biswas
Department of Computer Science & Engineering, Jamia Hamdard University, Hamdard Nagar, New Delhi – 62, India

Abstract


In this research paper the author introduces the notion of i-v fuzzy multigraph. The classical Dijkstra’s algorithmic rule to search out the shortest path in graphs isn’t applicable to fuzzy graph theory. Consequently the author proposes a brand new algorithmic rule referred to as by IVF-Dijkstra’s algorithmic rule with the philosophy of the classical Dijkstra’s formula to unravel the SPP in an i-v fuzzy multigraph.

Keywords


i-v Fuzzy Number, IVFSPA, IVF-Dijkstra’s.

References





DOI: https://doi.org/10.13005/ojcst%2F10.02.16