Open Access
Subscription Access
A Survey on Accelerated Mapreduce for Hadoop
Big Data is defined by 3Vs which stands for variety, volume and velocity. The volume of data is very huge, data exists in variety of file types and data grows very rapidly. Big data storage and processing has always been a big issue. Big data has become even more challenging to handle these days. To handle big data high performance techniques have been introduced. Several frameworks like Apache Hadoop has been introduced to process big data. Apache Hadoop provides map/reduce to process big data. But this map/reduce can be further accelerated. In this paper a survey has been performed for map/reduce acceleration and energy efficient computation in quick time.
Keywords
Map Reduce, GPU Computation And Open CL.
User
Font Size
Information
- Dumitrel Loghin, Lavanya Ramapantulu, Yong Meng Teo “An Approach for Energy Efficient Execution of Hybrid Parallel Programs” in IEEE International Parallel and Distributed Processing Symposium 2015.
- SungYe Kim, Jeremy Bottleson, Jingyi Jin, PreetiBindu “Power Efficient MapReduce Workload Acceleration Using Integrated-GPU”, in IEEE First International Conference on Big Data Computing Service and Applications (Big Data Service), pp.162-169. 2015.
- Motahar Reza, Aman Sinha, Rajkumar Nag, Prasant Mohanty “CUDA-enabled Hadoop cluster for Sparse Matrix Vector Multiplication” in IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS) 2015.
- J. Zhu, Li Juanjuan, E. Hardesty, H. Jiang and L. Kuan-Ching, “GPU-in-Hadoop: Enabling Map Reduce across distributed heterogeneous platforms”, IEEE/ACIS 13th International Conference of Computer and Information Science (ICIS), pp.321-326, 2014.
- Sufeng Niu, Guangyu Yang, Nilim Sarma, PengfeiXuan,Melissa C. Smith, PardipSrimani, Feng Luo, “Combining Hadoop and GPU to preprocess large Affymetrix microarray data” in IEEE International Conference on Big Data (Big Data) 2014.
- Mayank Tiwary, Abhaya Kumar Sahoo, RachitaMisra “Efficient implementation of apriori algorithm on HDFS using GPU” in International Conference on High Performance Computing and Applications (ICHPCA) 2014.
- MengjunXie, Kyoung-Don Kang, Can Basaran” Moim: A Multi-GPU Map Reduce Framework” in IEEE 16th International Conference on Computational Science and Engineering 2013.
- Malakar,R.; Vydyanathan,N., “ACUD Aenabled Hadoop cluster for fast distributed image processing, Parallel Computing Technologies (PARCOMPTECH), 2013 National Conference on , vol.1, pp.21-23, Feb. 2013.
- ZhaiYanlong, Guo Ying, Chen Qiurui, Yang Kai and E. Mbarushimana, “Design and Optimization of a Big Data Computing Framework Based on CPU/GPU Cluster”, pp.1039-1046, 2013.
- M. Xin and H. Li, “An implementation of gpu accelerated mapreduce: Using hadoop with opencl for data- and compute-intensive jobs”, International Joint Conference on Service Sciences, pp.6-11.
- Wenbin Fang, Bingsheng He, Qiong Luo, Naga K Govindaraju “Mars: Accelerating MapReduce with Graphics Processors” in IEEE Transactions on Parallel and Distributed Systems.
- Koichi Shirahata, Hitoshi Sato, and Satoshi Matsuoka.” Hybrid Map Task Scheduling for GPU-Based Heterogeneous Clusters” In Proceedings of CloudCom, pp.733-740, 2010.
- Max Grossman, Mauricio Breternitz, VivekSarkar “HadoopCL: MapReduce on Distributed Heterogeneous Platforms through Seamless Integration of Hadoop and OpenCL” in IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum 2013.
Abstract Views: 390
PDF Views: 0