

Fibonacci Cordial Labeling of Some Special Graphs
An injective function g: V(G) → {F0, F1, F2, . . . , Fn+1}, where Fj is the jth Fibonacci number (j = 0, 1, . . . , n+1), is said to be Fibonacci cordial labeling if the induced function g*: E(G) → {0, 1} defined by g * (xy) = (f (x) + f (y)) (mod2) satisfies the condition |eg (1) − eg (0)| ≤ 1. A graph having Fibonacci cordial labeling is called Fibonacci cordial graph.
In this paper, i inspect the existence of Fibonacci Cordial Labeling of DS(Pn), DS(DFn), Edge duplication in K1,n, Joint sum of Gl(n), DFn⊕ K1,n and ringsum of star graph with cycle with one chord and cycle with two chords respectively.
Keywords
Fibonacci Cordial Labeling, Degree Splitting, Edge Duplication, Joint Sum, Ring Sum.
User
Font Size
Information