Open Access
Subscription Access
Fibonacci Cordial Labeling of Some Special Graphs
An injective function g: V(G) → {F0, F1, F2, . . . , Fn+1}, where Fj is the jth Fibonacci number (j = 0, 1, . . . , n+1), is said to be Fibonacci cordial labeling if the induced function g*: E(G) → {0, 1} defined by g * (xy) = (f (x) + f (y)) (mod2) satisfies the condition |eg (1) − eg (0)| ≤ 1. A graph having Fibonacci cordial labeling is called Fibonacci cordial graph.
In this paper, i inspect the existence of Fibonacci Cordial Labeling of DS(Pn), DS(DFn), Edge duplication in K1,n, Joint sum of Gl(n), DFn⊕ K1,n and ringsum of star graph with cycle with one chord and cycle with two chords respectively.
Keywords
Fibonacci Cordial Labeling, Degree Splitting, Edge Duplication, Joint Sum, Ring Sum.
User
Font Size
Information
- A. H. Rokad and G. V. Ghodasara, Fibonacci Cordial Labeling of Some Special Graphs, Annals of Pure and Applied Mathematics, Vol. 11, No. 1, 2016, 133 − 144.
- F. Harary, Graph theory, Addision-wesley, Reading, MA (1969).
- J Gross and J Yellen, Handbook of graph theory, CRC press (2004).
- J. A. Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, 19 (2012), �DS6 1 − 260.
- M. Sundaram, R. Ponraj, and S. Somasundram, Prime cordial labeling of graphs, Journal of Indian Acadamy of Mathematics, 27 (2005), 373-390.
- M. A. Seoud and M. A. Salim, Two upper bounds of prime cordial graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 75 (2010), 95-103.
- S. K. Vaidya and P. L. Vihol, Prime cordial labeling for some cycle related graphs, International Journal of Open Problems in Computure Science Mathematics, 3, No.5 (2010), 223-232.
- S. K. Vaidya and P. L. Vihol, Prime cordial labeling for some graphs, Modern Applied Science, 4, No.8 (2010), 119-126.
- S. K. Vaidya and N. H. Shah, Prime cordial labeling of some graphs, Open Journal of Discrete Mathematics, 2, No. 1 (2012), 11-16. doi:10.4236/ojdm.2012.21003.
- S. K. Vaidyaa and N. H. Shah, Prime cordial labeling of some wheel related graphs, Malaya Journal of Matematik, 4(1)(2013) 148156.
Abstract Views: 276
PDF Views: 0