Open Access Open Access  Restricted Access Subscription Access

Controlling the Speed of Conveyor Belt using Python Raspberry Pi 3B+


Affiliations
1 College of Fisheries Engineering, Tamil Nadu Dr. J. Fisheries University, Nagapattinam, India
2 College of Fisheries Engineering, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Nagapattinam, India
 

In food processing industry, there arises a need to control a conveyor belt. currently industries are very necessary to use material handling system for to move materials from one place to another place continuously and to minimize operations time. Stepper Motor is suitable for controlling conveyor because of its high accuracy positioning over a short distance and provide high torque even at low speeds and it is also offer very low vibration and a wide range of features. This paper is focused on controlling the speed of the conveyor belt through the speed of stepper motor using the micro processor namely, Raspberry Pi 3B+’s (RP 3B+) GPIOs (General Purpose Input Output) and it can be generate sequence of control signals on the GPIO pins of RP 3B+. Interfacing the stepper motor with RP 3B+ using python programming language. The method is explained with the results of changing the weights the speed level is reduced through time variation on the conveyor belt and the model of working Conveyor belt with Stepper motor controlled by python and RP 3B+ with Easy Driver(A3967).

Keywords

Conveyor Belt, Python, Raspberry Pi 3B+, Stepper Motor.
User
Notifications
Font Size

  • Ajinkya Kale, Shivani Naidu, Bhagyashree Patel, Poonam Khobre, Sunil Rathod. An Automated Human Queue Management Using Conveyor Belt, Sensors and Controller at Public Places, Holy Places or Shrines, International Journal for Research in Applied Science & Engineering Technology (IJRASET)., 2017; 5(11): 2616-2620.
  • Akshay Varpe, Snehal Marne, Manasi Morye, Manisha Jadhav. Automatic Detection and Sorting of Products, International Journal of Innovations in Engineering Research and Technology., 2017:45-48.
  • Chavhan P. R, Rode S.V. Colour based Quality Analysis of Fruits for Automatic Grading using Raspberry PI, International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering., 2018; 6(3): 6-8.
  • Geda.Karthik Kumar, Kayalvizhi S. Real Time Industrial Colour Shape And Size Detection System Using Single Board, International Journal of Science, Engineering and Technology Research (IJSETR)., 2015; 4(3): 529-533.
  • Jyothi H. S, Harsha B. K. Design a Conveyor Based on Size and Color Separation of Product using Arduino UNO Microcontroller and Wireless Monitoring on Labview, International Journal Of Creative Research Thoughts (Ijcrt)., 2017; 5 (4): 2532-2539.
  • Manasa J, Pramod J.T, Jilani S.A.K, Javeed Hussain S. Real Time Object Counting using Raspberry pi, International Journal of Advanced Research in Computer and Communication Engineering., 2015; 4(7): 540-544.
  • Priyanka A. P, Shreya Bhattad, Abhilasha P. S, Nilam Londhe, Siddharth Vhanmarathe, Pradeep Khot. A Work Paper on Automatic Parcel Sorting and Delivery to Section, International Journal for Research in Applied Science & Engineering Technology (IJRASET)., 2019; 7(4): 1021-1023.
  • Rahul Vijay Soans, Pradyumna G.R, Yohei Fukumizu. Object Sorting using Image Processing, 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)., 2018.
  • Sanjay Prakash Dabade, Rohan Prakash Chumble. Automatic Sorting Machine Using Conveyor Belt, International Journal of Innovative and Emerging Research in Engineering., 2015; 2(5): 66-70.
  • Sheela S, Shivaram K. R, Meghashree S, Monica L, Prathima A, Shriya M.K. Low Cost Automation for Sorting of Objects on Conveyor Belt, International Journal of Innovative Research in Science, Engineering and Technology., 2016; 5(10): 195-200.
  • Shreeya V. K, Swati R. B, Priyanka P. B, Firame G.B. Automatic Box Sorting Machine, International Journal for Scientific Research & Development., 2016; 4 (4):57-58.
  • Wilson, J. M. Henry Ford: A Just-in-Time Pioneer. Production & Inventory Management Journal., 1996; 36(2): 26-31.

Abstract Views: 314

PDF Views: 1




  • Controlling the Speed of Conveyor Belt using Python Raspberry Pi 3B+

Abstract Views: 314  |  PDF Views: 1

Authors

M. Kamalakannan
College of Fisheries Engineering, Tamil Nadu Dr. J. Fisheries University, Nagapattinam, India
K. Devadharshini
College of Fisheries Engineering, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Nagapattinam, India

Abstract


In food processing industry, there arises a need to control a conveyor belt. currently industries are very necessary to use material handling system for to move materials from one place to another place continuously and to minimize operations time. Stepper Motor is suitable for controlling conveyor because of its high accuracy positioning over a short distance and provide high torque even at low speeds and it is also offer very low vibration and a wide range of features. This paper is focused on controlling the speed of the conveyor belt through the speed of stepper motor using the micro processor namely, Raspberry Pi 3B+’s (RP 3B+) GPIOs (General Purpose Input Output) and it can be generate sequence of control signals on the GPIO pins of RP 3B+. Interfacing the stepper motor with RP 3B+ using python programming language. The method is explained with the results of changing the weights the speed level is reduced through time variation on the conveyor belt and the model of working Conveyor belt with Stepper motor controlled by python and RP 3B+ with Easy Driver(A3967).

Keywords


Conveyor Belt, Python, Raspberry Pi 3B+, Stepper Motor.

References





DOI: https://doi.org/10.13005/ojcst12.02.05