Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Biological Agents for Delivery of Therapeutic Genes


Affiliations
1 Department of Biotechnology, Udaya School of Engineering, Nagercoil
     

   Subscribe/Renew Journal


The prevalence of achieving an effective treatment for cancer is that of eradicating tumors without harming healthy organs and cells of the patient. The concept of utilizing biological agents for delivery of therapeutic genes to patients to kill cancer cells has been under investigation for two decades, which exploits the natural ability of disease causing microbes to invade human cells. Safety-modified versions of pathogenic viruses or bacteria can deposit genes and induce production of anti-cancer agents upon administration to tumors and promising clinical trial successes have been achieved with various types of gene delivery vehicles. Bacteria present an attractive class of gene vectors, possessing a natural ability to grow specifically within tumors following intravenous (IV) injection. Several species such as Clostridium and Salmonella have been examined in clinical trials. However, as foreign, disease-causing bugs, their inherent toxicity has outweighed therapeutic responses in patients, despite efforts to reduce toxicity through genetic modification. A promising alternative exploits non-pathogenic bacterial species that have an existing natural relationship with humans. Our recent study (Cronin et al., 2010) has demonstrated that IV injection or ingestion of a species of probiotic bacterium, Bifidobacterium breve, in high numbers, results in trafficking of the bacteria throughout the body and accumulation specifically within cancerous tissue.

Keywords

Therapeutic, Vectors, LAB, Anti-Angiogenic Therapy.
Subscription Login to verify subscription
User
Notifications
Font Size


Abstract Views: 223

PDF Views: 0




  • Biological Agents for Delivery of Therapeutic Genes

Abstract Views: 223  |  PDF Views: 0

Authors

N. R. Reshma
Department of Biotechnology, Udaya School of Engineering, Nagercoil
U. Gayathri
Department of Biotechnology, Udaya School of Engineering, Nagercoil

Abstract


The prevalence of achieving an effective treatment for cancer is that of eradicating tumors without harming healthy organs and cells of the patient. The concept of utilizing biological agents for delivery of therapeutic genes to patients to kill cancer cells has been under investigation for two decades, which exploits the natural ability of disease causing microbes to invade human cells. Safety-modified versions of pathogenic viruses or bacteria can deposit genes and induce production of anti-cancer agents upon administration to tumors and promising clinical trial successes have been achieved with various types of gene delivery vehicles. Bacteria present an attractive class of gene vectors, possessing a natural ability to grow specifically within tumors following intravenous (IV) injection. Several species such as Clostridium and Salmonella have been examined in clinical trials. However, as foreign, disease-causing bugs, their inherent toxicity has outweighed therapeutic responses in patients, despite efforts to reduce toxicity through genetic modification. A promising alternative exploits non-pathogenic bacterial species that have an existing natural relationship with humans. Our recent study (Cronin et al., 2010) has demonstrated that IV injection or ingestion of a species of probiotic bacterium, Bifidobacterium breve, in high numbers, results in trafficking of the bacteria throughout the body and accumulation specifically within cancerous tissue.

Keywords


Therapeutic, Vectors, LAB, Anti-Angiogenic Therapy.