Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Pancreatic Polypeptide:Biologically Active Neuropeptide and their Clinical Significance


Affiliations
1 Columbia Institute of Pharmacy, Tekari, Raipur, Chhattisgarh, Pin-493111, India
     

   Subscribe/Renew Journal


Imbalances in normal regulation of food intake can cause obesity and related disorders. Pancreatic polypeptide (PP) share considerable amino acid sequence homology act as a robust anorexigenic hormone effectively modulates food intake and energy homeostasis, thus potentially aiding anti-obesity therapeutics. They are found in widely disparate locations, including the pancreas (PP), the distal gut (PYY), and the central nervous system (NPY). Intra-gastric and intra-intestinal infusion of nutrients stimulate PP secretion from the gastrointestinal tract, in turn that causes vagal stimulation and exerts complex actions via the neuropeptide Y4 receptor (Family of G-protein coupled Receptors) in arcuate nucleus of the hypothalamus, there by subsequently activating key hypothalamic nuclei and dorsal vagal complex of the brainstem to influence energy homeostasis and body composition. In this review our efforts have been devoted to summarize the detail about the pancreatic polypeptide their functions and mechanisms.

Keywords

Pancreatic Polypeptide, Anorexigenic Hormone, Vagal Stimulation, Obesity.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Hart PA, Baichoo E, Bi Y, Hinton A, Kudva YC, Chari ST. Pancreatic polypeptide response to a mixed meal is blunted in pancreatic head cancer associated with diabetes mellitus. Pancreatology. 2015 Apr 30;15(2):162-6.
  • Gingerich RL, Lacy PE, Chance RE, Johnson MG. Regional pancreatic concentration and in-vitro secretion of canine pancreatic polypeptide, insulin, and glucagon. Diabetes. 1978 Feb 1;27(2):96-101.
  • Rahier J, Wallon J, Gepts W, Haot J. Localization of pancreatic polypeptide cells in a limited lobe of the human neonate pancreas: remnant of the ventral primordium? Cell Tissue Res. 1979;200(3):359e66.
  • Lundberg JM, Tatemoto K. Pancreatic polypeptide family (APP, BPP, NPY and PYY) in relation to sympathetic vasoconstriction resistant to α‐adrenoceptor blockade. Actaphysiologicascandinavica. 1982 Dec 1;116(4):393-402.(8) 5. Haque, Emily; Chand, Rattan. "Milk protein derived bioactive peptides". Dairy Science. Retrieved 28 July 2014.
  • Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S; Destoumieux-Garzón; Peduzzi; Rebuffat (August 2007). "Microcins, gene-encoded antibacterial peptides from enterobacteria". Natural Product Reports. 24 (4):70834. doi:10.1039/b516237h.PMID 17653356.
  • Pons M, Feliz M, AntòniaMolins M, Giralt E; Felsiz; AntòniaMolins; Giralt (May 1991). "Conformational analysis of bacitracin A, a naturally occurring lariat". Biopolymers. 31 (6): 605–12. doi:10.1002/bip.360310604. PMID 1932561.
  • Torres AM, Menz I, Alewood PF, et al. (July 2002). "D-Amino acid residue in the C-type natriuretic peptide from the venom of the mammal, Ornithorhynchusanatinus, the Australian platypus". FEBS Letters. 524 (1–3): 172–6. doi:10.1016/S0014-5793(02)03050-8. PMID 12135762.
  • Meister A, Anderson ME; Anderson (1983). "Glutathione". Annual Review of Biochemistry. 52 (1)71160. doi:10.1146/annurev.bi.52.070183.003431.PMID 6137189.
  • Hahn M, Stachelhaus T; Stachelhaus (November 2004). "Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains". Proceedings of the National Academy of Sciences of the United States of America.101(44):1558590. Bibcode:2004PNAS..10115585H.doi:10.1073/pnas.0404932101. PMC 524835 . PMID 15498872.
  • Finking R, Marahiel MA; Marahiel (2004). "Biosynthesis of nonribosomal peptides1".AnnualReviewofMicrobiology.58(1):45388.doi:10.11 46/annurev.micro.58.030603.123615. PMID 15487945.
  • Du L, Shen B; Shen (March 2001). "Biosynthesis of hybrid peptide-polyketide natural products". Current Opinion in Drug Discovery and Development. 4 (2): 215–28.PMID 11378961.
  • http://www.usvpeptides.com
  • Payne JW (1976). "Peptides and micro-organisms". Advances in Microbial Physiology. Advances in Microbial Physiology. 13: 55–113. doi:10.1016/S0065-2911(08)60038-7.ISBN 9780120277131. PMID 775944.
  • Hummel J, Niemann M, Wienkoop S; et al. (2007). "ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites". BMC Bioinformatics. 8 (1): 216.doi:10.1186/1471-2105-8-216. PMC 1920535 . PMID 17587460.
  • Webster J, Oxley D; Oxley (2005). "Peptide mass fingerprinting: protein identification using MALDI-TOF mass spectrometry". Methods in Molecular Biology. Methods in Molecular Biology™. 310: 227–40. doi:10.1007/978-1-59259-948-6_16. ISBN 978-1-58829-399-2. PMID 16350956.
  • Marquet P, Lachâtre G; Lachâtre (October 1999). "Liquid chromatography-mass spectrometry: potential in forensic and clinical toxicology". Journal of Chromatography B.733 (1–2): 93–118. doi:10.1016/S0378-4347(99)00147-4. PMID 10572976.
  • Lonovics J, Devitt P, Watson LC, Rayford PL, Thompson JC (Oct 1981). "Pancreaticpolypeptide".ArchSurg.116(10):125664.doi:10.1001/a rchsurg.1981.01380220010002. PMID 7025798.
  • Batterham, RL; Le Roux, CW; Cohen, MA; Park, AJ; Ellis, SM; Patterson, M; Frost, GS; Ghatei, MA; Bloom, SR (Aug 2003). "Pancreatic polypeptide reduces appetite and food intake in humans". The Journal of Clinical Endocrinology and Metabolism. 88 (8): 3989–92.doi:10.1210/jc.2003-030630. PMID 12915697.
  • Boel, E.; Schwartz, T. W.; Norris, K. E.; Fiil, N. P. (April 1984). "A cDNA encoding a small common precursor for human pancreatic polypeptide and pancreatic icosapeptide". EMBO Journal. 3 (4): 909–912. PMC 557446 . PMID 6373251.
  • Holzer P, Reichmann F and Farzi A (2012) Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 46:261-274
  • Leiter AB, Keutmann HT and Goodman RH (1984) Structure of a precursor to human pancreatic polypeptide. The Journal of Biological Chemistry 259(23): 14702-14705
  • Koska J, DelParigi A, de Courten B, Weyer C and Tataranni PA (2004) Pancreatic polypeptide is involved in the regulation of body weight in Pima indian male subjects. Diabetes 53(12): 3091-3096
  • Dembiński A, Warzecha Z, Ceranowicz P, Pawlik M, Dembiński M, Kabat K, Konturek SJ, Kownacki P, Hladki W and Pawlik WW (2004) Influence of central and peripheral administration of pancreatic polypeptide on gastric mucosa growth. Journal of Physiology and Pharmacology 55(1): 223-237
  • Kumari A, Sreetama S and Mohanakumar KP (2007) Atropine, a muscarinic cholinergic receptor antagonist increases serotonin, but not dopamine levels in discrete brain regions of mice. Neuroscience Letters 423(2): 100-103
  • Tong J, Utzschneider KM, Carr DB, Zraika S, Udayasankar J, Gerchman F, Knopp RH and Kahn SE (2007) Plasma pancreatic polypeptide levels are associated with differences in body fat distribution in human subjects. Diabetologia 50(2): 439-442
  • Troke RC, Tan TM and Bloom SR (2014) The future role of gut hormones in the treatment of obesity. Therapeutic Advances in Chronic Disease 5(1): 4-14
  • Wynne K, Stanley S, McGowan B and Bloom S (2005) Appetite control. Journal of Endocrinology 184: 291-318
  • Sliwińska-Mossoń M, Borowiecka K and Milnerowicz H (2012) Neuropeptides Y, YY, PP and their clinical significance. Neuropeptides 46(6):261-274
  • Cabrele C and Beck-Sickinger AG (2000) Molecular characterization of the ligand-receptor interaction of the neuropeptide Y family. Journal of Peptide Science 6(3): 97-122
  • 1336 Asakawa A, Inui A, Yuzuriha H, Ueno N, Katsuura G, Fujimiya M, Fujino MA, Niijima A, Meguid MM andKasuga M (2003) Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology 124(5): 1325
  • Bozkurt T, Maroske D, Adler G. Exocrine pancreatic function after recovery from necrotizing pancreatitis. Hepato-gastroenterology. 1995 Feb;42(1):55-8.
  • https://www.boundless.com/physiology/textbooks/boundless-anatomy-and-physiology-textbook/endocrine-system-16/the-pancreas-159/types-of-cells-in-the-pancreas-798-365/
  • Doyle ME, Egan JM (2007) Mechanisms of action of glucagon-like peptide 1 in the pancreas. PharmacolTher 113: 546-593.
  • Holz GG, Leech CA, Heller RS, Castonguay M, Habener JF (1999) cAMP dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37). J BiolChem 274:14147-14156.
  • Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF (1987) Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. ProcNatlAcadSci U S A 84: 3434-3438.
  • Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15:539-553.
  • World Health Organisation. (1999) Definition, diagnosis and classification of diabetes mellitus and its complications: Report of a WHO Consultation. Part 1. Diagnosis and classification of diabetes mellitus. WHO/NCD/NCS/99.2.
  • Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res ClinPract 94: 311-321.
  • http://www.diabetes.org.uk/Guide-to-diabetes/Introduction-to-diabetes
  • Schwarz PE, Reimann M, Li J, Bergmann A, Licinio J, et al. (2007) The Metabolic Syndrome - a global challenge for prevention. HormMetab Res 39:777-780.
  • Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414: 782-787.
  • Nauck M, Stöckmann F, Ebert R, Creutzfeldt W (1986) Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29: 46-52.
  • Perley MJ, Kipnis DM (1967) Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic sujbjects. J Clin Invest 46: 1954-1962.
  • Nauck MA, Vardarli I, Deacon CF, Holst JJ, Meier JJ. (2011) Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia 54: 10-18.
  • Holst JJ, Deacon CF, Vilsbøll T, Krarup T, Madsbad S (2008) Glucagon-like peptide-1, glucose homeostasis and diabetes. Trends Mol Med 14: 161-168.
  • Meier JJ, Nauck MA (2010) Is the diminished incretin effect in type 2 diabetes just an epi-phenomenon of impaired beta-cell function? Diabetes 59: 1117-1125.
  • Zander M, Madsbad S, Madsen JL, Holst JJ (2002) Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 359: 824-830.
  • Toft-Nielsen MB, Damholt MB, Madsbad S, Hilsted LM, Hughes TE, et al. (2001) Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J ClinEndocrinolMetab 86: 3717-3723.
  • Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, et al. (1993) Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91: 301-307.
  • Knop FK, Vilsboll T, Hojberg PV, Larsen S, Madsbad S, et al. (2007) Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes 56: 1951-1959.
  • Schirra J, Katschinski M, Weidmann C, Schäfer T, Wank U, et al. (1996) Gastric emptying and release of incretin hormones after glucose ingestion in humans. J Clin Invest 97: 92-103.
  • Vilsbøll T, Krarup T, Madsbad S, Holst JJ (2002) Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia 45: 1111-1119.
  • Holst JJ, Gromada J (2004) Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J PhysiolEndocrinolMetab 287: E199-206.
  • Kjems LL, Holst JJ, Vølund A, Madsbad S (2003) The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 52: 380-386.
  • Nyholm B, Walker M, Gravholt CH, Shearing PA, Sturis J, et al. (1999) Twentyfour- hour insulin secretion rates, circulating concentrations of fuel substrates and gut incretin hormones in healthy offspring of Type II (non-insulin-dependent) diabetic parents: evidence of several aberrations. Diabetologia 42: 1314-1323.
  • Nauck MA, El-Ouaghlidi A, Gabrys B, Hücking K, Holst JJ, et al. (2004) Secretion of incretin hormones (GIP and GLP-1) and incretin effect after oral glucose in first-degree relatives of patients with type 2 diabetes. RegulPept 122: 209-217.
  • Holst JJ, Vilsbøll T, Deacon CF (2009) Theincretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 297: 127-136.
  • Salehi M, Aulinger B, Prigeon RL, D’Alessio DA (2010) Effect of endogenous GLP-1 on insulin secretion in type 2 diabetes. Diabetes 59: 1330-1337.
  • Nauck MA, Ratner RE, Kapitza C, Berria R, Boldrin M, et al. (2009) Treatment with the human once-weekly glucagon-like peptide-1 analog taspoglutide in combination with metformin improves glycemic control and lowers body weight in patients with type 2 diabetes inadequately controlled with metformin alone: a double-blind placebo-controlled study. Diabetes Care 32: 1237-1243.
  • Ratner R, Nauck M, Kapitza C, Asnaghi V, Boldrin M, et al. (2010) Safety and tolerability of high doses of taspoglutide, a once-weekly human GLP-1 analogue, in diabetic patients treated with metformin: a randomized doubleblind placebo-controlled study. Diabet Med 27: 556-562.
  • Gallwitz B (2010) The evolving place of incretin-based therapies in type 2 diabetes. PediatrNephrol 25: 1207-1217.
  • Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87: 1409-1439.
  • Coopman K, Huang Y, Johnston N, Bradley SJ, Wilkinson GF, et al. (2010) Comparative effects of the endogenous agonist glucagon-like peptide-1 (GLP1)-(7-36) amide and the small-molecule ago-allosteric agent “compound 2” at the GLP-1 receptor. J PharmacolExpTher 334: 795-808.209. Beinborn M, Worrall CI, McBride EW, Kopin AS (2005) A human glucagon like peptide-1 receptor polymorphism results in reduced agonist responsiveness. RegulPept 130: 1-6.
  • Thorens B (1992) Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. ProcNatlAcadSci U S A 89: 8641-8645.231. De Vos A, Heimberg H, Quartier E, Huypens P, Bouwens L, et al. (1995) Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J Clin Invest 96: 2489-2495.
  • Holz GG (2004) Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 53: 5-13.
  • Matschinsky FM (2002) Regulation of pancreatic beta-cell glucokinase: from basics to therapeutics. Diabetes 51 Suppl 3: S394-404.
  • Holz GG 4th, Kühtreiber WM, Habener JF (1993) Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 361: 362-365.
  • Montrose-Rafizadeh C, Egan JM, Roth J (1994) Incretin hormones regulate glucose-dependent insulin secretion in RIN 1046-38 cells: mechanisms of action. Endocrinology 135: 589-594.
  • Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, et al. (2001) Critical role of cAMP-GEFII--Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 276: 46046-46053.
  • Ozaki N, Shibasaki T, Kashima Y, Miki T, Takahashi K, et al. (2000) cAMPGEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2: 805- 811.
  • Kang G, Joseph JW, Chepurny OG, Monaco M, Wheeler MB, et al. (2003) Epac-selective cAMP analog 8-pCPT-2’-O-Me-cAMP as a stimulus for Ca2+- induced Ca2+ release and exocytosis in pancreatic beta-cells. J BiolChem 278: 8279-8285.
  • Tsuboi T, da Silva Xavier G, Holz GG, Jouaville LS, Thomas AP, et al. (2003) Glucagon like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells. Biochem J 369:287-299.
  • Kasai K, Ohara-Imaizumi M, Takahashi N, Mizutani S, Zhao S, et al. (2005) Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation. J Clin Invest 115: 388-396.
  • Jhala US, Canettieri G, Screaton RA, Kulkarni RN, Krajewski S, et al. (2003) cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev 17: 1575-1580.
  • Wang Q, Li L, Xu E, Wong V, Rhodes C, et al. (2004) Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 beta cells. Diabetologia 47: 478-487.
  • Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, et al. (2005) Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev 19: 2199-2211.
  • Tokuyama Y, Matsui K, Egashira T, Nozaki O, Ishizuka T, et al. (2004) Five missense mutations in glucagon-like peptide 1 receptor gene in Japanese population. Diabetes Res ClinPract 66: 63-69.
  • Salapatek AM, MacDonald PE, Gaisano HY, Wheeler MB (1999) Mutations to the third cytoplasmic domain of the glucagon-like peptide 1 (GLP-1) receptorm can functionally uncouple GLP-1-stimulated insulin secretion in HIT-T15 cells.MolEndocrinol 13: 1305-1317.
  • Berson, David M. (10 March 2007). "Phototransduction in ganglion-cell photoreceptors". PflügersArchiv - European Journal of Physiology. 454 (5): 849–855.
  • Langley J. On the stimulation and paralysis of nerve cells and of nerve-endings. Part 1. J Physiol 1901 October 16; 27(3): 224– 236.

Abstract Views: 482

PDF Views: 0




  • Pancreatic Polypeptide:Biologically Active Neuropeptide and their Clinical Significance

Abstract Views: 482  |  PDF Views: 0

Authors

Hemlata Dewangan
Columbia Institute of Pharmacy, Tekari, Raipur, Chhattisgarh, Pin-493111, India
Jhakeshwar Prasad
Columbia Institute of Pharmacy, Tekari, Raipur, Chhattisgarh, Pin-493111, India
Trilochan Satapathy
Columbia Institute of Pharmacy, Tekari, Raipur, Chhattisgarh, Pin-493111, India

Abstract


Imbalances in normal regulation of food intake can cause obesity and related disorders. Pancreatic polypeptide (PP) share considerable amino acid sequence homology act as a robust anorexigenic hormone effectively modulates food intake and energy homeostasis, thus potentially aiding anti-obesity therapeutics. They are found in widely disparate locations, including the pancreas (PP), the distal gut (PYY), and the central nervous system (NPY). Intra-gastric and intra-intestinal infusion of nutrients stimulate PP secretion from the gastrointestinal tract, in turn that causes vagal stimulation and exerts complex actions via the neuropeptide Y4 receptor (Family of G-protein coupled Receptors) in arcuate nucleus of the hypothalamus, there by subsequently activating key hypothalamic nuclei and dorsal vagal complex of the brainstem to influence energy homeostasis and body composition. In this review our efforts have been devoted to summarize the detail about the pancreatic polypeptide their functions and mechanisms.

Keywords


Pancreatic Polypeptide, Anorexigenic Hormone, Vagal Stimulation, Obesity.

References