Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Antioxidative Response in Tomato Plants Lycopersicon Esculentum L. Roots and Leaves to Zinc


Affiliations
1 Laboratory of Cell Toxicology, Badji Mokhtar University Annaba, 23000, Annaba, Algeria
2 Nature and Life Sciences Department, Tebessa University, Algeria
     

   Subscribe/Renew Journal


This work aims to evaluate the response of tomato plants (Lycopersicon esculentum L. var. Rio Grande) to treatment with zinc and accumulation (trace element) in the ischolar_mains and leaves of young plants. This is done by analyzing the effects of zinc on the rate of chlorophyll and enzyme activity involved in the antioxidant system (CAT, GST, APX). Plants previously grown on a basic nutrient solution is treated by increasing concentrations of ZnSO4 (0, 50, 100, 250, 500 microM) for 07 days. The results show that Zn does not affect the amount of chlorophyll at 50 and 100 microns, while it seems to inhibit the higher concentrations (250 and 500 microns). On the other hand, treatment with zinc induced the activity of enzymes studied, namely (CAT, APX, GST) especially for higher concentrations. Finally, the determination of zinc in the ischolar_mains and leaves of tomato shows a greater accumulation in the ischolar_mains compared to leaves.

Keywords

Zinc, Chlorophyll, Enzyme Activities, Oxidative Stress, Lycopersicon Esculentum.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Wagner G.J., 1993. Accumulation of cadmium in crop plants and its consequences to human health, Adv. Agron., 51: 173-212.
  • Ravera O., 2001. Monitoring of the aquatic environment by species accumulator of polluants. J. Limnol., 60: 63-78.
  • Hardiman R.T., B. Jacoby and A. Benin, 1984. Factors affecting the distribution of cadmium, copper and lead and their effect upon yield and zinc content in bush beans (Phaseolus vulgaris L.), Plant Soil, 81: 17-27.
  • Hart J.J., R.M. Welch, W.A. Norvell and L.V. Kochian, 2002. Transport interaction between Cd and Zn in ischolar_mains of bread wheat and durum wheat seedling. Physiol Plant, 116(1): 73-78.
  • Ammar W.B., I. Nouari, M. Zarrouk, M.H. Ghorbel and F. Jemal, 2008. Antioxydative response to cadmium in ischolar_mains and leaves of tomato plants. Biologia Plantarium, 52(4): 727-731.
  • Van Balen, E., S.C. Van de Geijn and G.M. Desomet, 1980. Autoradiographie evidence for the incorporation of cadmium into calcium oxalate crystals. Z. Pflanzenphysiol., 97: 123-133.
  • Godbold D.L., W.J. Host, J.C. Collins, D.A. Thurmann and H. Marshner, 1984. Accumulation of zinc and organic acids in ischolar_mains of zinc tolerant and non-tolerant ecotypes of Deschampsia caespitose.
  • Verkleij, J.A.C., P.C. Lolkema, A.L. De Needling and H. Harmens, 1991. Heavy metal resistance in higher plants: biochemical and genetic aspects. in Ecological reponses to environmental stresses. Kluwer Academc Publisher, Pays-Bas., pp: 8-19.
  • Zoghlami Boulila L., W. Djebali, W. Chaib and M.H. Ghorbel, 2006. Modification physiologiques et structurales induites par l'interaction cadmiumdestabilize calcium chez la tomate (Lycopersicon esculentum). C.R Biologies, 329: 702-711.
  • Neumann, D., O. Lichtenberger, D. Gunther, K. Tschiersch and L. Nover, 1994. Heat-shock proteins induce heavy-metal tolerance in higher plants. Planta, 194: 360-367.
  • Scheller, H.V., B. Huang, E. Hatch and P.B. Goldsbrough, 1987. Phytochelatines Synthesis and Glutathione le vels in reponse to heavy metals in tomato cells. Plant Physiol., 85: 1031-1035.
  • Cataldo, D.A., R.E. Wildung and T.R. Garland, 1987. Speciation of trace inorganic contaminants in plants Environ. Qual., 16: 289- 295.
  • Djebali W., W. Chaibi and H.W. Ghorbel, 2002. Croissance, activité peroxydasique et modification ultrastructurales induites par le cadmium dans la racine de tomate, Can. J. Bot., 80 : 942-953.
  • Young Yang, Fu-Suo Zhang, Hua-Fen Li and Rong- Feng Jiang, 2009. Accumulation of cadmium in the edible parts of six vegetable species grown in Cdlead contaminated soils. J. Environmental Management, 90: 1117-1122.
  • Razinger, J., M. Dermastia, L. Drinovec, D. Drobne, A. Zrimec and J.D. Koce, 2007. antioxidative responses of duckweed (Lemna minor L.) to shortand term copper exposure. Environ. Sci. Pollut. Res. 14 (3): 194-201. doi:10.1065/espr2006.11.364.
  • Mediouni, C., W. Ben Ammar, G. Houlné, M.E. Chabouté and F. Jemal, 2009. Cadmium and copper induction of oxidative stress and antioxydative reponse in tomato (Solanum lycopersicon) leaves. Plant Growth Regul., 57: 89-99.
  • Holden, M., 1975. Chlorophylls in chemistry and biochemistry. 2 Ed. Ed Academy press, New york. nd pp: 133.
  • Arnon, D.I., 1949. Cooper enzymes in isolated chloroplasts polyphenoloxydase in Betavulgaris. Plant physical., 24: 1-25.
  • Cakmak, I. and W.J. Horst, 1991. Effect of aluminium on lipid peroxidation, superoxidase dismutase, catalase and peroxidase activities in ischolar_main tips of soybean (Glycine max). Physiol. Plant, 83: 463-468.
  • Habig W.H., M.J. Pabst and W.B. Jakoby, 1974. Glutathion S-Transferases, the First enzymatic step in mercapturic acid formation. The J. Biological Chemistry, 249: 7130-7139.
  • Nakano, Y. and K. Azada, 1987. Purification of ascorbate peroxidase in spinach chloroplasts : its inactivation in ascorbate depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol., 28: 131-140.
  • Van Assche, F., C. Cardinaels and H. Clijsters, 1988. Induction of enzyme capacity in plants as a result of heavy metal toxicity: dose-response relations in Phaseolus vulgaris L., treated with zinc and cadmium, Environ. Pollut., 52: 103-115.
  • Foyer, C.H., M.L. Lelandais and K.J. Kunert, 1994. Photo-oxydative stress in plants, Physiol. Plant, 92: 696-717.
  • Rygal, J., W.M. Arnold and U. Zimmermann, 1992. Zinc and salinity effects on membrane transport in Chara conivens. Plant Cell Environ, 15: 11-23.
  • Jarvis, S.C., L.H.P. Jones and M.J. Hopper, 1976. Cadmium uptake from solution by plants and its transport from ischolar_mains to shoots. Plant. Soil., 44: 179-191.
  • Dong, J., F. Wu and G. Zhang, 2006. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedling (Lycopersicon esculentum), Chemosphere, 64: 1659-1666.
  • Gallego, S.M., M.P. Benavides and M.L. Tomaro, 1996. Effect of heavy Metal ion excess on sunflower leaves: evidence for involvement of an oxidative stress. Plant Sci., 121: 151-159.
  • Moustakas, M., T. Lanaras, L. Symeonidis and S. Karataglis, 1997. Growth and some photosynthetic characteristics of field grown Avena sativa under copper and lead stress. Photosynthetica, 30: 389-396.
  • Singh, K.P., D. Mohan, S. Sinha and R. Dalwani, 2004. Impact assessments of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural and environmental quality in the wastewater disposal area. Chemosphere, 55: 227-255.
  • Sbartai, H., R. Rouabhi, I. Sbartai, H. Berrebbah and M.R. Djebar, 2008. Induction of anti-oxidative enzymes by cadmium stress in tomato (Lycopersicon esculentum). African J. Plant Sci. 2(8): 72-76.
  • Clijsters, H., A. Cuypers and J. Vangronsveld, 1999. Physiological responses to heavy metals in higher plants; defence against oxidative stress, Z. Naturforsch, 54c: 730-734.
  • Sanità di Toppi, L., M. Lambardi, L. Pazzagli, M. Cappugi, M. Durante and R. Gabrielli, XXXX. Reponse to cadmium in carrot in vitro plants and cell suspension cultures, Plant Sci., 137: 119-129.
  • Cakmak, I., R.M. Welch, B. Erenoglu, V. Romheld, W.A. Norvell and L.V. Kochian, 2000. Influence of varied Zn supply n re-translocation of Cd ( Cd) and Rb ( Rb) applied on mature leaf of durum wheat seedling. Plant Soil, 219: 279-284.
  • Abmann, S., K. Sigler and M. Hofer, 1996. Cd+² induced damage to yeast plasma membrane and its alleviation by Zn+²: studies on schizosaccharomycetes pompe cells and reconstituted plasma membrane vesicles. Arch Microbiol., 165: 279-284.
  • Zhao, Z.Q., Y.G. Zhu and Y.L.Cai, 2005. Effect of zinc on cadmium uptake by spring wheat (Triticum aestivum L): long-time hydroponic study and short- time 109 Cd tracing study, J. Zhejiang Univ. SCI, 6A(7): 643-648.
  • Chaoui, A., S. Mazhoudi, M.H. Ghorbal and E. El Ferjani, 1997. Cadmium and Zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean, Plant Sci., 127: 139-147. 109 86

Abstract Views: 230

PDF Views: 3




  • Antioxidative Response in Tomato Plants Lycopersicon Esculentum L. Roots and Leaves to Zinc

Abstract Views: 230  |  PDF Views: 3

Authors

H. Sbartai
Laboratory of Cell Toxicology, Badji Mokhtar University Annaba, 23000, Annaba, Algeria
M. R. Djebar
Laboratory of Cell Toxicology, Badji Mokhtar University Annaba, 23000, Annaba, Algeria
R. Rouabhi
Nature and Life Sciences Department, Tebessa University, Algeria
I. Sbartai
Laboratory of Cell Toxicology, Badji Mokhtar University Annaba, 23000, Annaba, Algeria
H. Berrebbah
Laboratory of Cell Toxicology, Badji Mokhtar University Annaba, 23000, Annaba, Algeria

Abstract


This work aims to evaluate the response of tomato plants (Lycopersicon esculentum L. var. Rio Grande) to treatment with zinc and accumulation (trace element) in the ischolar_mains and leaves of young plants. This is done by analyzing the effects of zinc on the rate of chlorophyll and enzyme activity involved in the antioxidant system (CAT, GST, APX). Plants previously grown on a basic nutrient solution is treated by increasing concentrations of ZnSO4 (0, 50, 100, 250, 500 microM) for 07 days. The results show that Zn does not affect the amount of chlorophyll at 50 and 100 microns, while it seems to inhibit the higher concentrations (250 and 500 microns). On the other hand, treatment with zinc induced the activity of enzymes studied, namely (CAT, APX, GST) especially for higher concentrations. Finally, the determination of zinc in the ischolar_mains and leaves of tomato shows a greater accumulation in the ischolar_mains compared to leaves.

Keywords


Zinc, Chlorophyll, Enzyme Activities, Oxidative Stress, Lycopersicon Esculentum.

References