Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Bounds for the Complex Growth Rate in Rivlin-Ericksen Viscoelastic Fluid in the Presence of Rotation in a Porous Medium


Affiliations
1 Department of Mathematics, G. C.Arki, Distt. Solan (HP), India
2 Department of Mathematics, Govt. College Nadaun, Dist. Hamirpur, (HP) 177033, India
     

   Subscribe/Renew Journal


The thermal instability of a Rivlin-Ericksen viscoelastic fluid acted upon by uniform vertical rotation and heated from below in a porous medium is investigated. Following the linearized stability theory and normal mode analysis, the paper through mathematical analysis of the governing equations of Rivlin-Ericksen viscoelastic fluid convection with a uniform vertical rotation, for the case of rigid boundaries shows that the complex growth rate σ of oscillatory perturbations, neutral or unstable for all wave numbers, must lie inside the right half of the semi-circle

σ2r + σ2i TA[εP1/P1+εF]2,

in a σ-plane, where TA is the Taylor number, F is the viscoelasticity parameter, ε is the porosity, P1 is the medium permeability; which prescribes the upper limits to the complex growth rate of arbitrary oscillatory motions of growing amplitude in a rotatory Rivlin-Ericksen viscoelastic fluid heated from below. The result is important since it hold for all wave numbers and for rigid boundaries of infinite horizontal extension at the top and bottom of the fluid, and the exact solutions of the problem investigated in closed form, is not obtainable.


Keywords

Thermal Convection, Rivlin-Ericksen Fluid, Rotation, PES, Rayleigh Number, Taylor Number.
Subscription Login to verify subscription
User
Notifications
Font Size


Abstract Views: 247

PDF Views: 3




  • Bounds for the Complex Growth Rate in Rivlin-Ericksen Viscoelastic Fluid in the Presence of Rotation in a Porous Medium

Abstract Views: 247  |  PDF Views: 3

Authors

Daleep K. Sharma
Department of Mathematics, G. C.Arki, Distt. Solan (HP), India
Ajaib S. Banyal
Department of Mathematics, Govt. College Nadaun, Dist. Hamirpur, (HP) 177033, India

Abstract


The thermal instability of a Rivlin-Ericksen viscoelastic fluid acted upon by uniform vertical rotation and heated from below in a porous medium is investigated. Following the linearized stability theory and normal mode analysis, the paper through mathematical analysis of the governing equations of Rivlin-Ericksen viscoelastic fluid convection with a uniform vertical rotation, for the case of rigid boundaries shows that the complex growth rate σ of oscillatory perturbations, neutral or unstable for all wave numbers, must lie inside the right half of the semi-circle

σ2r + σ2i TA[εP1/P1+εF]2,

in a σ-plane, where TA is the Taylor number, F is the viscoelasticity parameter, ε is the porosity, P1 is the medium permeability; which prescribes the upper limits to the complex growth rate of arbitrary oscillatory motions of growing amplitude in a rotatory Rivlin-Ericksen viscoelastic fluid heated from below. The result is important since it hold for all wave numbers and for rigid boundaries of infinite horizontal extension at the top and bottom of the fluid, and the exact solutions of the problem investigated in closed form, is not obtainable.


Keywords


Thermal Convection, Rivlin-Ericksen Fluid, Rotation, PES, Rayleigh Number, Taylor Number.