Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

The Flow of Magnetohydrodynamic Flow Over Cylinder with Heat Source or Sink


Affiliations
1 Department of BS&H (Mathematics), Sree Vidyanikethan Engineering College (Autonomous), A. Rangampet, Tirupati-517102, (A.P), India
2 Dept. of Mathematics, S.V. University, Tirupati (A.P), India
3 Dept. Of Mathematics, GITAM University, Bangalore (K.A), India
4 Dept. of Mechanical Engineering, NIT Warangal, Warangal (Telangana), India
     

   Subscribe/Renew Journal


A theoretical analysis performed for investigating steady boundary layer flow of magnetohydrodynamic flow over cylinder with heat source/sink. Proposed mathematical model has a tendency to characterize the effect of magnetohydrodynamic flow over cylinder heat source/sink. The non-linear ordinary differential equations are solved using the Runge-Kutta method. The characteristics of velocity and temperature boundary layers for different physical parameters such as heat source parameter QH , Reynolds number Re, the Prandtl number Pr , the magnetic field parameter M and power law index parameter n . Moreover, the local friction factor coefficients, Nusselt number are also estimated and discussed for aforesaid physical parameters. It is observed that heat transfer rate increases with in power law index parameter and magnetic field parameter while decrease in power law index parameter and Reynolds number.

Keywords

Stretching Cylinder, Magnetohydrodynamic, Prandtl Number, Power Law Index Parameter.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Crane L. Flow past a stretching plate, Z. Angew. Math. Phy, 1970; 21:p.645-647.
  • Cortell R. Flow and Heat transfer of fluid through a pours medium over a stretching sheet with internal heat generation/absorption suction/blowing, Fluid Dyn. Res. 2005; 37:p.231-245.
  • IbrahimW. Makinde O. D. Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition. Journal of Aerospace Engineering, 2016; 29: 04015037.
  • IbrahimW. Makinde O.D. Magnetohydrodynamic stagnation point flow of a power-law nanofluid towards a convectively heated stretching sheet with slip. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2016; 230: p. 345-354.
  • Nadeem S. Akram S. Peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel, Z. Naturforsch. 2009; 64: p. 559– 567.
  • Nadeem S. Akram S. Effects of partial slip on the peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel, Int. J. Numer. Methods Fluids. 2010; 63:p. 374-394.
  • Nadeem S. Rehman A. Lee C. Lee J. Boundary layer flow of second grade fluid in a cylinder with heat transfer, Math. Prob. Eng. 2012; 212:doi.org/10.1155/2012/640289.
  • Nadeem S. Rehman A. Vajravelu K. Lee J. Lee C. Axisymmetric stagnation flow of a micropolar nanofluid in a moving cylinder, Math. Prob. Eng. 2012: 2012: doi.org/10.1155/2012/378259.
  • Gorla RSR Axisymmetric thermal boundary layer of a micropolar fluid on a cylinder. Int. J. Eng. Sci. 1985; 23 p.401–407.
  • Gorla RGR Ameri A. Boundary layer flow of a micropolar fluid on a continuous moving cylinder, Acta Mech. 1985; 57:p.203-214.
  • Wang TY. Mixed convection heat transfer from a vertical plate to non-Newtonian fluids, Int. J. Heat Fluid Flow.1995; 16:p.56-61.
  • Wang CY. Natural convection on a vertical stretching cylinder. Commun. Nonlinear Sci. Numer. Simulat.2012; 17:p.1098-1103.
  • Raju CSK. Sanjeevi P. Raju MC, Ibrahim SM. Lorenzini G. Lorenzini E. The flow of magnetohydrodynamic Maxwell nanofluid over a cylinder with Cattaneo-Christov heat flux model, Continuum Mech. Thermodyn. DOI 10.1007/s00161-017-0580-z.
  • Raju CSK. Kiran Kumar RVMSS. Varma SVK. Madaki AG Durga Prasad P. Transpiration Effects on MHD Flow over a Stretched Cylinder with Cattaneo- Christov Heat Flux with Suction or Injection. Arab J Sci Eng, DOI 10.1007/s13369-017-2687-8.
  • Raju CSK. Sandeep N. MHD slip flow of a dissipative Casson fluid over a moving geometry with heat source/sink: A numerical study, Acta Astronautica. 2017; 133: p.436-443.
  • Pal D. Mandal G. Magnetohydrodynamic Heat Transfer of Nanofluids Past a Stretching Cylinder with Non-Uniform Heat Source/Sink and Chemical Reaction, Int. J. Appl. Comput. Math. DOI 10.1007/s40819-016-0241-0.
  • Hayat T. Waqas M. Ijaz Khan M. Alsaedi A. Shehzad SA. Magnetohydrodynamic flow of Burgers fluid with heat source and power law heat flux.2017; 55(2):p.318-330.
  • Goyal M. Bhargava R. Numerical Solution of MHD Viscoelastic Nanofluid Flow overa Stretching Sheet with Partial Slip and Heat Source/Sink. 2013; 931021: pp.1-11. doi.org/10.1155/2013/931021.
  • NaseerM. Malik MY. RehmanA. Numerical study of convective heat transfer on the power law fluid over a vertical exponentially stretching cylinder, Applied and Computational Mathematics. 2015; 4(5): p.346-350, doi: 10.11648/j.acm.20150405.13.
  • Naseer M. Yousaf Malik M. Nadeem S. Rehman A. The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder. Alexandria Engineering Journal. 2014; 53:p. 747-750.

Abstract Views: 471

PDF Views: 0




  • The Flow of Magnetohydrodynamic Flow Over Cylinder with Heat Source or Sink

Abstract Views: 471  |  PDF Views: 0

Authors

Ch. Murali Krishna
Department of BS&H (Mathematics), Sree Vidyanikethan Engineering College (Autonomous), A. Rangampet, Tirupati-517102, (A.P), India
K. R. Sekhar
Dept. of Mathematics, S.V. University, Tirupati (A.P), India
C. S. K. Raju
Dept. Of Mathematics, GITAM University, Bangalore (K.A), India
G. V. Reddy
Dept. of Mathematics, S.V. University, Tirupati (A.P), India
P. Prakash
Dept. of Mechanical Engineering, NIT Warangal, Warangal (Telangana), India

Abstract


A theoretical analysis performed for investigating steady boundary layer flow of magnetohydrodynamic flow over cylinder with heat source/sink. Proposed mathematical model has a tendency to characterize the effect of magnetohydrodynamic flow over cylinder heat source/sink. The non-linear ordinary differential equations are solved using the Runge-Kutta method. The characteristics of velocity and temperature boundary layers for different physical parameters such as heat source parameter QH , Reynolds number Re, the Prandtl number Pr , the magnetic field parameter M and power law index parameter n . Moreover, the local friction factor coefficients, Nusselt number are also estimated and discussed for aforesaid physical parameters. It is observed that heat transfer rate increases with in power law index parameter and magnetic field parameter while decrease in power law index parameter and Reynolds number.

Keywords


Stretching Cylinder, Magnetohydrodynamic, Prandtl Number, Power Law Index Parameter.

References