Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Ideals and Symmetrc Left Bi-Derivations on Prime Rings


Affiliations
1 Department of Mathematics, Sri Venkateswara University, Tirupati-517502, Andhra Pradesh, India
     

   Subscribe/Renew Journal


Let 𝑅 be a non commutative 2, 3-torsion free prime ring and 𝐼 be a non zero ideal of 𝑅. Let 𝐷 (.,.) :𝑅×𝑅→𝑅 be a symmetric left bi-derivation such that 𝐷(𝐼,𝐼)⊂𝐼 and 𝑑 is a trace of 𝐷. If (i) [𝑑(𝑥),𝑥] =0, for all 𝑥∈𝐼, (ii) [𝑑(𝑥),𝑥] ∈𝑍(𝑅), for all 𝑥∈𝐼, then 𝐷=0. Suppose that there exists symmetric left bi-derivations 𝐷1 (.,.) :𝑅×𝑅→𝑅 and 𝐷2 (.,.) :𝑅×𝑅→𝑅 and 𝐵 (.,.) :𝑅×𝑅→𝑅 is a symmetric bi-additive mapping, such that (i) 𝐷1 (𝑑2 (𝑥) ,𝑥) =0, for all 𝑥∈𝐼, (ii) 𝑑1 (𝑑2 (𝑥)) =𝑓(𝑥), for all 𝑥∈𝐼, where 𝑑1 and 𝑑2 are the traces of 𝐷1 and 𝐷2 respectively and 𝑓 is trace of 𝐵, then either 𝐷1=0 or 𝐷2=0. If 𝐷 acts as a left (resp. right) 𝑅-homomorphism on 𝐼, then 𝐷=0.

Keywords

Prime Ring, Symmetric Mapping, Trace, Bi-Additive Mapping, Symmetric Bi-Additive Mapping, Symmetric Bi-Derivation, Symmetric Left Bi-Derivation.
Subscription Login to verify subscription
User
Notifications
Font Size



  • Ideals and Symmetrc Left Bi-Derivations on Prime Rings

Abstract Views: 540  |  PDF Views: 0

Authors

C. Jaya Subba Reddy
Department of Mathematics, Sri Venkateswara University, Tirupati-517502, Andhra Pradesh, India
G. Venkata Bhaskara Rao
Department of Mathematics, Sri Venkateswara University, Tirupati-517502, Andhra Pradesh, India

Abstract


Let 𝑅 be a non commutative 2, 3-torsion free prime ring and 𝐼 be a non zero ideal of 𝑅. Let 𝐷 (.,.) :𝑅×𝑅→𝑅 be a symmetric left bi-derivation such that 𝐷(𝐼,𝐼)⊂𝐼 and 𝑑 is a trace of 𝐷. If (i) [𝑑(𝑥),𝑥] =0, for all 𝑥∈𝐼, (ii) [𝑑(𝑥),𝑥] ∈𝑍(𝑅), for all 𝑥∈𝐼, then 𝐷=0. Suppose that there exists symmetric left bi-derivations 𝐷1 (.,.) :𝑅×𝑅→𝑅 and 𝐷2 (.,.) :𝑅×𝑅→𝑅 and 𝐵 (.,.) :𝑅×𝑅→𝑅 is a symmetric bi-additive mapping, such that (i) 𝐷1 (𝑑2 (𝑥) ,𝑥) =0, for all 𝑥∈𝐼, (ii) 𝑑1 (𝑑2 (𝑥)) =𝑓(𝑥), for all 𝑥∈𝐼, where 𝑑1 and 𝑑2 are the traces of 𝐷1 and 𝐷2 respectively and 𝑓 is trace of 𝐵, then either 𝐷1=0 or 𝐷2=0. If 𝐷 acts as a left (resp. right) 𝑅-homomorphism on 𝐼, then 𝐷=0.

Keywords


Prime Ring, Symmetric Mapping, Trace, Bi-Additive Mapping, Symmetric Bi-Additive Mapping, Symmetric Bi-Derivation, Symmetric Left Bi-Derivation.

References