Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Coupled Fixed Point of Set Valued Mapping in Partially Ordered G-Metric Space


Affiliations
1 Department of Mathematics, National Institute of Technology, Hamirpur - 177005, India
     

   Subscribe/Renew Journal


In this manuscript, we obtain sufficient condition for the existence of a coupled fixed point of a mixed monotone set-valued bivariate self map F, i.e. F : X × X → X in partially ordered complete G-metric space.

Keywords

Coupled Fixed Point, G-metric Space, Set-valued Maps, Partially Ordered Set.
Subscription Login to verify subscription
User
Notifications
Font Size


  • I. Beg, Random fixed points of increasing compact maps, Archi. Mathematicum 37(2001), 329-332.
  • I. Beg and A. Azam, Fixed points of asymptotically regular multivalued mappings, J. Austral. Math. Soc. (Series-A) 53(3) (1992), 313-326.
  • I. Beg and A.R. Butt, Fixed point for set valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal. 71(2009), 3699-3704.
  • I. Beg and A.R. Butt, Fixed points for weakly compatible mappings satisfying an implicit relation in partially ordered metric spaces, Carpathian J. Math. 25(2009), 1-12.
  • I. Beg and A.R. Butt, Common Fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces, Mathematical Communications, 15(2010), 65-76.
  • I. Beg, A. Latif, R. Ali and A. Azam, Coupled Fixed points of mixed monotone operators on probabilistic Banach spaces, Archivum Mathematicum 37(2001), 1-8.
  • T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379- 1393.
  • P.Z. Daffer, Fixed points of generalized contractive multivalued mappings, J. Math. Anal. Appl., 192 (1995), 655-666.
  • P.Z. Daffer, H. Kaneko and W. Li, On a conjecture of S. Reich, Proc. Amer. Math. Soc., 124 (1996), 3159-3162.
  • Y. Feng and S. Liu, Fixed point theorems for multivalued contractive mappings and multivaled Caristi type mappings, J. Math. Anal. Appl., 317 (2006), 103-112.
  • D. Guo and V. Lakshmikantham, Coupled Fixed points of nonlinear operators with applications, Nonlinear. Anal., 11(1987), 623-632.
  • J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71(2009), 3403-3410.
  • J. Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal. (2009), doi:10.1016/j.na.2009.08.003(in press).
  • W.A. Kirk and K.Goebel, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge (1990).
  • D. Klim and D.Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl., 334 (2007), 132-139.
  • A. Kaewcharoen and A. Kaewkhao, Common Fixed Points for Single- Valued and Multi-Valued Mappings in G-Metric Spaces, Int. Journal of Math. Analysis, 536 (2011), 1775-1790.
  • Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, Proceedings of the International Conferences on Fixed Point Theory and Applications, Valencia (Spain) (2003), 185-198. 18. S.B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30(1969), 475-488.
  • J.J. Nieto, R.L. Pouso and R. Rodriguez-Lopez, Fixed point theorems in ordered abstract spaces, Proc. Amer. Math. Soc., 135(2007), 2505-2517.
  • J.J. Nieto and R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22(2005), 223-239.
  • J.J. Nieto and R. Rodriguez-Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta. Math. Sinica, (English Ser.) 23(2007), 2205-2212.
  • D. O'Regan and A. Petrusel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl., 341 (2008), 1241-1252.
  • A. Petrusel and I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math.Soc., 134 (2005), 411-418.
  • C.Y. Qing, On a fixed point problem of Reich, Proc. Amer. Math. Soc., 124 (1996), 3085-3088.
  • A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435-1443.
  • S. Reich, Fixed points of contractive functions, Boll. Unione. Mat. Ital., 4 (1972), 26-42.
  • Y. Wu, New fixed point theorems and applications of mixed monotone operator, J. Math. Anal. Appl., 341 (2008), 883-893.
  • E. Zeidler, Nonlinear Functional Analysis and its Applications I, Fixed point Theorems, Springer Verlag, New York (1985).
  • Z. Zhitao, New fixed point theorems of mixed monotone operators and applications, J.Math. Anal. Appl., 204 (1996), 307-319.

Abstract Views: 833

PDF Views: 0




  • Coupled Fixed Point of Set Valued Mapping in Partially Ordered G-Metric Space

Abstract Views: 833  |  PDF Views: 0

Authors

Ramesh Kumar Vats
Department of Mathematics, National Institute of Technology, Hamirpur - 177005, India
Amit Kumar
Department of Mathematics, National Institute of Technology, Hamirpur - 177005, India
J. Ravinder
Department of Mathematics, National Institute of Technology, Hamirpur - 177005, India

Abstract


In this manuscript, we obtain sufficient condition for the existence of a coupled fixed point of a mixed monotone set-valued bivariate self map F, i.e. F : X × X → X in partially ordered complete G-metric space.

Keywords


Coupled Fixed Point, G-metric Space, Set-valued Maps, Partially Ordered Set.

References