Open Access Open Access  Restricted Access Subscription Access

TALENs, a Revolutionary Innovation Tool in Germline Genome-Editing


Affiliations
1 Aquaculture Biotechnology Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632 014 Tamil Nadu, India
2 Laboratory of Infectious Disease, College of Veterinary Medicine, Chungnam National University, Daejeon, 305‐764, Korea, Republic of
3 Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSH&RC), MBC‐03, PO BOX 3354, Riyadh, 11211, Saudi Arabia
 

Transcription activator‐like effector nuclease (TALENs) is an emerging programmable nuclease, enable precise genome editing by introducing DNA double‐strand breaks (DSBs) at specific genomic loci. DSBs subsequently recruit the endogenous non‐homologous end‐joining (NHEJ) or homology‐directed repair (HDR) units to the DSB site to mediate genome editing. Mutagenesis induced by the TALENs have shown higher efficacy, as much as 76%, and have been demonstrated to induce effective and heritable mutations in various organisms and cells, thus proving furthermore, to be highly scalable and reliable and is an applicable method to single cells and multicellular organisms. In this mini‐review, we summarized recent findings and applications of TALEN mediated germ line knock‐down in cells and vertebrate animal models.

Keywords

TALENs, DBS, Mutagenesis, HDR and NHEJ.
User
Notifications
Font Size

  • Beale G. (1993). The discovery of mustard gas mutagenesis by Auerbach and Robson in 1941. Genetics, 134(2), 393-399.
  • Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG 2nd, Tan W, Penheiter SG, Ma AC, Leung AY, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC. (2012). In vivo genome editing using a high-efficiency TALEN system. Nature, 491, 114–118.
  • Beurdeley M, Bietz F, Li J, Thomas S, Stoddard T, Juillerat A, Zhang F, Voytas DF, Duchateau P, Silva GH. (2013). Compact designer TALENs for efficient genome engineering. Nature Communications, 4, 1762.
  • Bogdanove AJ, Voytas DF. (2011). TAL effectors: customizable proteins for DNA targeting. Science, 333(6051), 1843–1846.
  • Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC. (2012). Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the United States of America, 109(43), 17382-17387.
  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. (2011). Efficient design and assembly of custom TALEN and other TAL effectorbased constructs for DNA targeting. Nucleic Acids Research, 39(12), e82.
  • Christian M, Qi Y, Zhang Y, Voytas DF. (2013). Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 (Bethesda), 3, 1697–1705.
  • Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K. (2013). Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 12(4), 393-394.
  • Flibotte S, Edgley ML, Chaudhry I, Taylor J, Neil SE, Rogula A, Zapf R, Hirst M, Butterfield Y, Jones SJ, Marra MA, Barstead RJ, Moerman DG. (2010). Whole-genome profiling of mutagenesis in Caenorhabditis elegans. Genetics, 185, 431-441.
  • Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R. (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 29, 731–734.
  • Holkers M, Maggio I, Henriques SF, Janssen JM, Cathomen T, Gonçalves MA. (2014). Adenoviral vector DNA for accurate genome editing with engineered nucleases. Nature Methods, 11(10), 1051-1057.
  • Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B. (2011). Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology, 29(8), 699–700.
  • Hwang WY, Peterson RT, Yeh JR. (2014). Methods for targeted mutagenesis in zebrafish using TALENs. Methods, 69(1), 76–84.
  • Kim H, Kim JS. (2014). A guide to genome engineering with programmable nucleases. Nature Reviews Genetics, 15(5), 321-334.
  • Liu Z, Zhou X, Zhu Y, Chen ZF, Yu B, Wang Y, Zhang CC, Nie YH, Sang X, Cai YJ, Zhang YF, Zhang C, Zhou WH, Sun Q, Qiu Z. (2014). Generation of a monkey with MECP2 mutations by TALEN-based gene targeting. Neuroscience Bulletin, 30(3), 381-386.
  • Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proceedings of the National Academy of Sciences of the United States of America, 108, 2623-2628.
  • Mashimo T, Kaneko T, Sakuma T, Kobayashi J, Kunihiro Y, Voigt B, Yamamoto T, Serikawa T. (2013). Efficient gene targeting by TAL effector nucleases coinjected with exonucleases in zygotes. Scientific Reports, 3, 1253.
  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29, 143–148.
  • Morbitzer R, Römer P, Boch J, Lahaye T. (2010). Regulation of selected genome loci using de novoengineered transcription activator-like effector (TALE)-type transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 107, 21617-21622.
  • Mussolino C, Cathomen T. (2012). TALE nucleases: tailored genome engineering made easy. Current Opinion in Biotechnology, 23, 644–650.
  • Nakajima K, Yaoita Y. (2015). Development of a new approach for targeted gene editing in primordial germ cells using TALENs in Xenopus. Biology Open, 4(3), 259-266.
  • Qiu Z, Liu M, Chen Z, Shao Y, Pan H, Wei G, Yu C, Zhang L, Li X, Wang P, Fan HY, Du B, Liu B, Liu M, Li D. (2013). High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Research, 41(11), e120.
  • Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. (2012). FLASH assembly of TALENs for high-throughput genome editing. Nature Biotechnology, 30, 460–465.
  • Sajwan S, Takasu Y, Tamura T, Uchino K, Sezutsu H, Zurovec M. (2013). Efficient disruption of endogenous Bombyx gene by TAL effector nucleases. Insect Biochemistry and Molecular Biology, 43(1), 17-23.
  • Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK. (2011). Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods, 8, 67–69.
  • Sakuma T, Hosoi S, Woltjen K, Suzuki K, Kashiwagi K, Wada H, Ochiai H, Miyamoto T, Kawai N, Sasakura Y, Matsuura S, Okada Y, Kawahara A, Hayashi S, Yamamoto T. (2013). Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes to Cells, 18(4), 315-326.
  • Song J, Zhong J, Guo X, Chen Y, Zou Q, Huang J, Li X, Zhang Q, Jiang Z, Tang C, Yang H, Liu T, Li P, Pei D, Lai L. (2013). Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs. Cell Research, 23(8), 1059-1062.
  • Stroud DA, Formosa LE, Wijeyeratne XW, Nguyen TN, Ryan MT. (2013). Gene knockout using transcription activator-like effector nucleases (TALENs) reveals that human NDUFA9 protein is essential for stabilizing the junction between membrane and matrix arms of complex I. The Journal of Biological Chemistry, 288(3), 1685-1690.
  • Sun N, Zhao H. (2013). Seamless correction of the sickle cell disease mutation of the HBB Gene in human induced pluripotent stem cells using TALENs. Biotechnology and Bioengineering, 111(5), 1048-1053.
  • Suzuki KT, Isoyama Y, Kashiwagi K, Sakuma T, Ochiai H, Sakamoto N, Furuno N, Kashiwagi A, Yamamoto T. (2013). High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos. Biology Open, 2(5), 448–452.
  • Tesson L, Usal C, Ménoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ. (2011). Knockout rats generated by embryo microinjection of TALENs. Nature Biotechnology, 29, 695–696.
  • Tong C, Huang G, Ashton C, Wu H, Yan H, Ying QL. (2012). Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs. Journal of Genetics and Genomics, 39(6), 275-280.
  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 11, 636–646.
  • Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, Ma J, Chen W, Zhang Y, Zhou X, Yang Z, Wu SQ, Chen L, Han J. (2013). Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Research, 23(8), 994-1006.
  • Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, Zu Y, Li W, Huang P, Tong X, Zhu Z, Lin S, Zhang B. (2013). Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Research, 41(14), e141.
  • Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. (2011). Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotechnology, 29, 149-153.

Abstract Views: 181

PDF Views: 6




  • TALENs, a Revolutionary Innovation Tool in Germline Genome-Editing

Abstract Views: 181  |  PDF Views: 6

Authors

Maivannan Thiruvarangan
Aquaculture Biotechnology Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632 014 Tamil Nadu, India
Maheswaran Easwaran
Laboratory of Infectious Disease, College of Veterinary Medicine, Chungnam National University, Daejeon, 305‐764, Korea, Republic of
Raja Sudhakaran
Aquaculture Biotechnology Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632 014 Tamil Nadu, India
Sateesh Maddirevula
Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSH&RC), MBC‐03, PO BOX 3354, Riyadh, 11211, Saudi Arabia

Abstract


Transcription activator‐like effector nuclease (TALENs) is an emerging programmable nuclease, enable precise genome editing by introducing DNA double‐strand breaks (DSBs) at specific genomic loci. DSBs subsequently recruit the endogenous non‐homologous end‐joining (NHEJ) or homology‐directed repair (HDR) units to the DSB site to mediate genome editing. Mutagenesis induced by the TALENs have shown higher efficacy, as much as 76%, and have been demonstrated to induce effective and heritable mutations in various organisms and cells, thus proving furthermore, to be highly scalable and reliable and is an applicable method to single cells and multicellular organisms. In this mini‐review, we summarized recent findings and applications of TALEN mediated germ line knock‐down in cells and vertebrate animal models.

Keywords


TALENs, DBS, Mutagenesis, HDR and NHEJ.

References