Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

The Flying Wing UAV Using Classical Control Theory


Affiliations
1 Bhubaneswar Engineering College, Bhubaneswar, Odisha, India
     

   Subscribe/Renew Journal


This paper describes modeling design procedure of a flying wing UAV which is a tailless fixed wing aircraft and has no definite fuselage, with respect of the crew, payload and equipment being housed inside the main wing structure. In this thesis a 6 degree-of-freedom mathematical model describing the aircraft dynamics is first presented, then using these equations, the derivatives of the parameters and system identification of simplified, linear lateral and longitudinal models are estimated for the tailless aircraft. A detailed modeling procedure of flying wing UAV and stability analysis results using the linearized model at trim condition are represented. Finally, we have designed the flying wing UAV using classical control theory.

Keywords

Control, Designe, Model, UAV.
User
Subscription Login to verify subscription
Notifications
Font Size


  • The Flying Wing UAV Using Classical Control Theory

Abstract Views: 1000  |  PDF Views: 0

Authors

Debashis Padhi
Bhubaneswar Engineering College, Bhubaneswar, Odisha, India
Vikash Shaw
Bhubaneswar Engineering College, Bhubaneswar, Odisha, India
Abhijit Dehury
Bhubaneswar Engineering College, Bhubaneswar, Odisha, India
Sudipta Sur
Bhubaneswar Engineering College, Bhubaneswar, Odisha, India
Debasish Biswal
Bhubaneswar Engineering College, Bhubaneswar, Odisha, India

Abstract


This paper describes modeling design procedure of a flying wing UAV which is a tailless fixed wing aircraft and has no definite fuselage, with respect of the crew, payload and equipment being housed inside the main wing structure. In this thesis a 6 degree-of-freedom mathematical model describing the aircraft dynamics is first presented, then using these equations, the derivatives of the parameters and system identification of simplified, linear lateral and longitudinal models are estimated for the tailless aircraft. A detailed modeling procedure of flying wing UAV and stability analysis results using the linearized model at trim condition are represented. Finally, we have designed the flying wing UAV using classical control theory.

Keywords


Control, Designe, Model, UAV.

References