

Acoustical Parameters of Binary Mixtures of 1,4-Dicholorobutane with Some Hydrocarbons at 308.15k, 313.15k and 318.15k
Several acoustical parameters viz. free length (Lf ), Wada's constant (W), acoustical impedance (Z), available volume (Va) and relaxation time (τ) have been evaluated from the experimental values of ultrasound velocities (u) and densities (ρ) of the binary mixtures of 1,4-dichlorobutane with several hydrocarbons viz. cyclohexane, benzene, methylbenzene, 1,2-dimethylbenzene, 1,4-dimethylbenzene and 1,3,5-trimethylbenzene over entire mole fractions range at three temperatures 308.15K, 313.15K, and 318.15K. Lf values decrease for all the systems as molefraction of 1,4-dichlorobutane increase in the binary mixtures at the three experimental temperatures. Wada constant increase for binary mixtures of 1,4-dichlorobutane with cyclohexane, benzene and methylbenzene as mole fractions of 1,4-dichlorobutane increase and for other three binary mixtures it decrease. Z and τ values increases with molefractions of 1,4-dichlorobutane for all binary mixture except τ values for the binary mixtures with cyclohexane which decrease. Va values for binary mixtures of 1,4-dichlorobutane with benzene, methylbenzene and 1,2-dimethylbenzene increase and for other three experimental binary systems decrease as molefractions of 1,4-dichlorobenzene increase.
Keywords
Ultrasound Velocity, Binary Mixtures, 1,4-Dichlorobutane, Aromatic Hydrocarbons.
User
Font Size
Information